Textbooks on the theory of relativity have been published by several notable physicists and mathematicians:
The primary sources section of the latter article in particular contains many additional (early) publications of importance in the field.
:For a translation see: s:Translation:The Relative Motion of the Earth and the Aether. Hendrik Lorentz was a major influence on Einstein's theory of special relativity. Lorentz laid the fundamentals for the work by Einstein and the theory was originally called the Lorentz-Einstein theory. After 1905 Lorentz wrote several papers on what he called "Einstein's principle of relativity".
:Introduced the special theory of relativity. Reconciled Maxwell's equations for electricity and magnetism with the laws of mechanics by introducing major changes to mechanics close to the speed of light. One of the Annus Mirabilis papers.
:English translations: "Does the Inertia of a Body Depend Upon Its Energy Content?". Translation by George Barker Jeffery and Wilfrid Perrett in The Principle of Relativity, London: Methuen and Company, Ltd. (1923). :Used the newly formulated theory of special relativity to introduce the mass energy formula. One of the Annus Mirabilis papers.
* —— (21 December 1907). 53–111. **English translation: The Fundamental Equations for Electromagnetic Processes in Moving Bodies. In: The Principle of Relativity (1920), Calcutta: University Press, 1-69
. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse:** Translation by Meghnad Saha, "Space and Time" (1920): Wikisource link. : Introduced the four-vector notation and the notion of Minkowski space, which was later adopted by Einstein and others.
:Used concepts developed in the then-current textbooks (e.g., vector analysis and non-Euclidean geometry) to provide entry into mathematical physics with a vector-based introduction to quaternions and a primer on matrix notation for linear transformations of 4-vectors. The ten chapters are composed of 4 on kinematics, 3 on quaternion methods, and 3 on electromagnetism. Silberstein used biquaternions to develop Minkowski space and Lorentz transformations.
: This publication is the first complete account of a general relativistic theory.