In probability and statistics, the logarithmic distribution (also known as the logarithmic series distribution or the log-series distribution) is a discrete probability distribution derived from the Maclaurin series expansion
Probability mass function The function is only defined at integer values. The connecting lines are merely guides for the eye. | |||
Cumulative distribution function | |||
Parameters | |||
---|---|---|---|
Support | |||
PMF | |||
CDF | |||
Mean | |||
Mode | |||
Variance | |||
MGF | |||
CF | |||
PGF |
From this we obtain the identity
This leads directly to the probability mass function of a Log(p)-distributed random variable:
for k ≥ 1, and where 0 < p < 1. Because of the identity above, the distribution is properly normalized.
The cumulative distribution function is
where B is the incomplete beta function.
A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution, and Xi, i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log(p) distribution, then
has a negative binomial distribution. In this way, the negative binomial distribution is seen to be a compound Poisson distribution.
R. A. Fisher described the logarithmic distribution in a paper that used it to model relative species abundance.[1]