Because of this, the logit is also called the log-odds since it is equal to the logarithm of the odds where p is a probability. Thus, the logit is a type of function that maps probability values from to real numbers in ,[1] akin to the probit function.
Definition
edit
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.:
The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used. The choice of base corresponds to the choice of logarithmic unit for the value: base 2 corresponds to a shannon, base e to a nat, and base 10 to a hartley; these units are particularly used in information-theoretic interpretations. For each choice of base, the logit function takes values between negative and positive infinity.
The difference between the logits of two probabilities is the logarithm of the odds ratio (R), thus providing a shorthand for writing the correct combination of odds ratios only by adding and subtracting:
History
edit
Several approaches have been explored to adapt linear regression methods to a domain where the output is a probability value , instead of any real number . In many cases, such efforts have focused on modeling this problem by mapping the range to and then running the linear regression on these transformed values.[2]
In 1934, Chester Ittner Bliss used the cumulative normal distribution function to perform this mapping and called his model probit, an abbreviation for "probability unit". This is, however, computationally more expensive.[2]
In 1944, Joseph Berkson used log of odds and called this function logit, an abbreviation for "logistic unit", following the analogy for probit:
"I use this term [logit] for following Bliss, who called the analogous function which is linear on for the normal curve 'probit'."
Log odds was used extensively by Charles Sanders Peirce (late 19th century).[4]G. A. Barnard in 1949 coined the commonly used term log-odds;[5][6] the log-odds of an event is the logit of the probability of the event.[7] Barnard also coined the term lods as an abstract form of "log-odds",[8] but suggested that "in practice the term 'odds' should normally be used, since this is more familiar in everyday life".[9]
The logit is also central to the probabilistic Rasch model for measurement, which has applications in psychological and educational assessment, among other areas.
The inverse-logit function (i.e., the logistic function) is also sometimes referred to as the expit function.[10]
In plant disease epidemiology, the logistic, Gompertz, and monomolecular models are collectively known as the Richards family models.
The log-odds function of probabilities is often used in state estimation algorithms[11] because of its numerical advantages in the case of small probabilities. Instead of multiplying very small floating point numbers, log-odds probabilities can just be summed up to calculate the (log-odds) joint probability.[12][13]
As shown in the graph on the right, the logit and probit functions are extremely similar when the probit function is scaled, so that its slope at y = 0 matches the slope of the logit. As a result, probit models are sometimes used in place of logit models because for certain applications (e.g., in item response theory) the implementation is easier.[14]
^Stigler, Stephen M. (1986). The history of statistics : the measurement of uncertainty before 1900. Cambridge, Massachusetts: Belknap Press of Harvard University Press. ISBN 978-0-674-40340-6.
^Hilbe, Joseph M. (2009), Logistic Regression Models, CRC Press, p. 3, ISBN 9781420075779.
^Styler, Alex (2012). "Statistical Techniques in Robotics" (PDF). p. 2. Retrieved 2017-01-26.
^Dickmann, J.; Appenrodt, N.; Klappstein, J.; Bloecher, H. L.; Muntzinger, M.; Sailer, A.; Hahn, M.; Brenk, C. (2015-01-01). "Making Bertha See Even More: Radar Contribution". IEEE Access. 3: 1233–1247. Bibcode:2015IEEEA...3.1233D. doi:10.1109/ACCESS.2015.2454533. ISSN 2169-3536.
^Albert, James H. (2016). "Logit, Probit, and other Response Functions". Handbook of Item Response Theory. Vol. Two. Chapman and Hall. pp. 3–22. doi:10.1201/b19166-1. ISBN 978-1-315-37364-5.
Barnard, George Alfred (1949). "Statistical Inference". Journal of the Royal Statistical Society. B. 11 (2): 115–149. doi:10.1111/j.2517-6161.1949.tb00028.x. JSTOR 2984075.
External links
edit
Which Link Function — Logit, Probit, or Cloglog? 12.04.2023
Further reading
edit
Ashton, Winifred D. (1972). The Logit Transformation: with special reference to its uses in Bioassay. Griffin's Statistical Monographs & Courses. Vol. 32. Charles Griffin. ISBN 978-0-85264-212-2.