When , the Lucas sequences and satisfy certain Pell equations:
Relations between sequences with different parameters
edit
For any number c, the sequences and with
have the same discriminant as and :
For any number c, we also have
Other relations
edit
The terms of Lucas sequences satisfy relations that are generalizations of those between Fibonacci numbers and Lucas numbers. For example:
Divisibility properties
edit
Among the consequences is that is a multiple of , i.e., the sequence
is a divisibility sequence. This implies, in particular, that can be prime only when n is prime.
Another consequence is an analog of exponentiation by squaring that allows fast computation of for large values of n.
Moreover, if , then is a strong divisibility sequence.
Let N be an integer relatively prime to 2Q. If the smallest positive integer r for which N divides exists, then the set of n for which N divides is exactly the set of multiples of r.
If P and Q are even, then are always even except .
If P is odd and Q is even, then are always odd for every .
If P is even and Q is odd, then the parity of is the same as n and is always even.
If P and Q are odd, then are even if and only if n is a multiple of 3.
A prime factor of a term in a Lucas sequence which does not divide any earlier term in the sequence is called primitive.
Carmichael's theorem states that all but finitely many of the terms in a Lucas sequence have a primitive prime factor.[2] Indeed, Carmichael (1913) showed that if D is positive and n is not 1, 2 or 6, then has a primitive prime factor. In the case D is negative, a deep result of Bilu, Hanrot, Voutier and Mignotte[3] shows that if n > 30, then has a primitive prime factor and determines all cases has no primitive prime factor.
Specific names
edit
The Lucas sequences for some values of P and Q have specific names:
Lucas sequences are used in some primality proof methods, including the Lucas–Lehmer–Riesel test, and the N+1 and hybrid N−1/N+1 methods such as those in Brillhart-Lehmer-Selfridge 1975.[4]
LUC is a public-key cryptosystem based on Lucas sequences[5] that implements the analogs of ElGamal (LUCELG), Diffie–Hellman (LUCDIF), and RSA (LUCRSA). The encryption of the message in LUC is computed as a term of certain Lucas sequence, instead of using modular exponentiation as in RSA or Diffie–Hellman. However, a paper by Bleichenbacher et al.[6] shows that many of the supposed security advantages of LUC over cryptosystems based on modular exponentiation are either not present, or not as substantial as claimed.
Software
edit
Sagemath implements and as lucas_number1() and lucas_number2(), respectively.[7]
^ abYabuta, M (2001). "A simple proof of Carmichael's theorem on primitive divisors" (PDF). Fibonacci Quarterly. 39 (5): 439–443. doi:10.1080/00150517.2001.12428701. Retrieved 4 October 2018.
^Bilu, Yuri; Hanrot, Guillaume; Voutier, Paul M.; Mignotte, Maurice (2001). "Existence of primitive divisors of Lucas and Lehmer numbers" (PDF). J. Reine Angew. Math. 2001 (539): 75–122. doi:10.1515/crll.2001.080. MR 1863855. S2CID 122969549.
^P. J. Smith; M. J. J. Lennon (1993). "LUC: A new public key system". Proceedings of the Ninth IFIP Int. Symp. On Computer Security: 103–117. CiteSeerX10.1.1.32.1835.
^D. Bleichenbacher; W. Bosma; A. K. Lenstra (1995). "Some Remarks on Lucas-Based Cryptosystems" (PDF). Advances in Cryptology — CRYPT0' 95. Lecture Notes in Computer Science. Vol. 963. pp. 386–396. doi:10.1007/3-540-44750-4_31. ISBN 978-3-540-60221-7.
Carmichael, R. D. (1913), "On the numerical factors of the arithmetic forms αn±βn", Annals of Mathematics, 15 (1/4): 30–70, doi:10.2307/1967797, JSTOR 1967797
Lehmer, D. H. (1930). "An extended theory of Lucas' functions". Annals of Mathematics. 31 (3): 419–448. Bibcode:1930AnMat..31..419L. doi:10.2307/1968235. JSTOR 1968235.
Ward, Morgan (1954). "Prime divisors of second order recurring sequences". Duke Math. J. 21 (4): 607–614. doi:10.1215/S0012-7094-54-02163-8. hdl:10338.dmlcz/137477. MR 0064073.
Somer, Lawrence (1980). "The divisibility properties of primary Lucas Recurrences with respect to primes" (PDF). Fibonacci Quarterly. 18 (4): 316–334. doi:10.1080/00150517.1980.12430140.
Lagarias, J. C. (1985). "The set of primes dividing Lucas Numbers has density 2/3". Pac. J. Math. 118 (2): 449–461. CiteSeerX10.1.1.174.660. doi:10.2140/pjm.1985.118.449. MR 0789184.
Hans Riesel (1994). Prime Numbers and Computer Methods for Factorization. Progress in Mathematics. Vol. 126 (2nd ed.). Birkhäuser. pp. 107–121. ISBN 0-8176-3743-5.
Ribenboim, Paulo; McDaniel, Wayne L. (1996). "The square terms in Lucas Sequences". J. Number Theory. 58 (1): 104–123. doi:10.1006/jnth.1996.0068.
Joye, M.; Quisquater, J.-J. (1996). "Efficient computation of full Lucas sequences" (PDF). Electronics Letters. 32 (6): 537–538. Bibcode:1996ElL....32..537J. doi:10.1049/el:19960359. Archived from the original (PDF) on 2015-02-02.
Ribenboim, Paulo (1996). The New Book of Prime Number Records (eBook ed.). Springer-Verlag, New York. doi:10.1007/978-1-4612-0759-7. ISBN 978-1-4612-0759-7.
Ribenboim, Paulo (2000). My Numbers, My Friends: Popular Lectures on Number Theory. New York: Springer-Verlag. pp. 1–50. ISBN 0-387-98911-0.
Luca, Florian (2000). "Perfect Fibonacci and Lucas numbers". Rend. Circ Matem. Palermo. 49 (2): 313–318. doi:10.1007/BF02904236. S2CID 121789033.
Yabuta, M. (2001). "A simple proof of Carmichael's theorem on primitive divisors" (PDF). Fibonacci Quarterly. 39 (5): 439–443. doi:10.1080/00150517.2001.12428701.