BREAKING NEWS

## Summary

In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix $A$ is the list of entries $a_{i,j}$ where $i=j$ . All off-diagonal elements are zero in a diagonal matrix. The following three matrices have their main diagonals indicated by red ones:

${\begin{bmatrix}\color {red}{1}&0&0\\0&\color {red}{1}&0\\0&0&\color {red}{1}\end{bmatrix}}\qquad {\begin{bmatrix}\color {red}{1}&0&0&0\\0&\color {red}{1}&0&0\\0&0&\color {red}{1}&0\end{bmatrix}}\qquad {\begin{bmatrix}\color {red}{1}&0&0\\0&\color {red}{1}&0\\0&0&\color {red}{1}\\0&0&0\end{bmatrix}}\qquad {\begin{bmatrix}\color {red}{1}&0&0&0\\0&\color {red}{1}&0&0\\0&0&\color {red}{1}&0\\0&0&0&\color {red}{1}\end{bmatrix}}\qquad$ ## Antidiagonal

The antidiagonal (sometimes counter diagonal, secondary diagonal, trailing diagonal, minor diagonal, off diagonal, or bad diagonal) of an order $N$  square matrix $B$  is the collection of entries $b_{i,j}$  such that $i+j=N+1$  for all $1\leq i,j\leq N$ . That is, it runs from the top right corner to the bottom left corner.

${\begin{bmatrix}0&0&\color {red}{1}\\0&\color {red}{1}&0\\\color {red}{1}&0&0\end{bmatrix}}$