March 1988 lunar eclipse

Summary

A penumbral lunar eclipse took place on Thursday, March 3, 1988, the first of two lunar eclipses in 1988, the second being on August 27, 1988.[1] Earlier sources compute this as a 0.3% partial eclipse lasting under 14 minutes, and newest calculations list it as a penumbral eclipse that never enters the umbral shadow. In a rare total penumbral eclipse, the entire Moon was partially shaded by the Earth (though none of it was in complete shadow), and the shading across the Moon should have been quite visible at maximum eclipse. The penumbral phase lasted for 4 hours, 53 minutes and 50.6 seconds in all, though for most of it, the eclipse was extremely difficult or impossible to see. The Moon was 2.2 days after apogee (Apogee on Tuesday, March 1, 1988), making it 6.1% smaller than average.[2]

March 1988 lunar eclipse
Penumbral eclipse
Date3 March 1988
Gamma0.98855
Magnitude1.09076
Saros cycle113 (62 of 71)
Penumbral293 minutes, 50.6 seconds
Contacts (UTC)
P113:45:51.0
Greatest16:12:45.7
P418:39:41.6

This was a relatively rare total penumbral lunar eclipse with the moon passing entirely within the penumbral shadow without entering the darker umbral shadow.

The tables below contain detailed predictions and additional information on the Penumbral Lunar Eclipse of 3 March 1988. edit

Penumbral Magnitude: 1.09076

Umbral Magnitude: -0.00163

Gamma: 0.98855

Saros Series: 113th (62 of 71)

Date: 3 March 1988

Greatest Eclipse: 03 Mar 1988 16:12:45.7 UTC (16:13:41.5 TD)

Ecliptic Opposition: 03 Mar 1988 16:01:03.9 UTC (16:01:59.8 TD)

Equatorial Opposition: 03 Mar 1988 15:09:41.3 UTC (15:10:37.2 TD)

Coordinate Sun Moon
Right Ascension 22.97 11
Declination -6.6 7.3
Diameter (arcseconds) 1935.6 1772.0
Equatorial Horizontal Parallax (arcseconds) 8.9 3251.6

Visibility edit

The total penumbral lunar eclipse was visible over Europe, Africa, Asia, Australia, northwestern North America, seen rising over the 30th meridian east and setting over the 150th meridian west on the Equator.

 

Relations to other lunar eclipses edit

Eclipses of 1988 edit

Saros series edit

This eclipse is part of Saros cycle series 113.

Lunar year series edit

Lunar eclipse series sets from 1988–1991
Descending node   Ascending node
Saros Date Type
Viewing
Gamma Saros Date
Viewing
Type
Chart
Gamma
113 1988 Mar 03
 
Penumbral
 
0.98855 118 1988 Aug 27
 
Partial
 
−0.86816
123 1989 Feb 20
 
Total
 
0.29347 128 1989 Aug 17
 
Total
 
−0.14905
133 1990 Feb 09
 
Total
 
−0.41481 138 1990 Aug 06
 
Partial
 
0.63741
143 1991 Jan 30
 
Penumbral
 
−1.07522 148 1991 Jul 26
 
Penumbral
 
1.43698
Last set 1987 Apr 14 Last set 1987 Oct 07
Next set 1991 Dec 21 Next set 1991 Jun 27

Metonic series edit

The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will be in nearly the same location relative to the background stars.

  1. 1988 Mar 03.675 – Partial (113)
  2. 2007 Mar 03.972 – Total (123)
  3. 2026 Mar 03.481 – Total (133)
  4. 2045 Mar 03.320 – Penumbral (143)
  1. 1988 Aug 27.461 – partial (118)
  2. 2007 Aug 28.442 – total (128)
  3. 2026 Aug 28.175 – partial (138)
  4. 2045 Aug 27.578 – penumbral (148)
   

Half-Saros cycle edit

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[3] This lunar eclipse is related to two total solar eclipses of Solar Saros 120.

February 26, 1979 March 9, 1997
   

See also edit

Notes edit

  1. ^ Hermit Eclipse: Saros cycle 113
  2. ^ Total Penumbral Lunar Eclipses, Jean Meeus, June 1980
  3. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros

External links edit