Morley's trisector theorem

Summary

In plane geometry, Morley's trisector theorem states that in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle, called the first Morley triangle or simply the Morley triangle. The theorem was discovered in 1899 by Anglo-American mathematician Frank Morley. It has various generalizations; in particular, if all the trisectors are intersected, one obtains four other equilateral triangles.

If each vertex angle of the outer triangle is trisected, Morley's trisector theorem states that the purple triangle will be equilateral.

Proofs edit

There are many proofs of Morley's theorem, some of which are very technical.[1] Several early proofs were based on delicate trigonometric calculations. Recent proofs include an algebraic proof by Alain Connes (1998, 2004) extending the theorem to general fields other than characteristic three, and John Conway's elementary geometry proof.[2][3] The latter starts with an equilateral triangle and shows that a triangle may be built around it which will be similar to any selected triangle. Morley's theorem does not hold in spherical[4] and hyperbolic geometry.

 
Fig 1.   Elementary proof of Morley's trisector theorem

One proof uses the trigonometric identity

 

(1)

which, by using of the sum of two angles identity, can be shown to be equal to

 

The last equation can be verified by applying the sum of two angles identity to the left side twice and eliminating the cosine.

Points   are constructed on   as shown. We have  , the sum of any triangle's angles, so   Therefore, the angles of triangle   are   and  

From the figure

 

(2)

and

 

(3)

Also from the figure

 

and

 

(4)

The law of sines applied to triangles   and   yields

 

(5)

and

 

(6)

Express the height of triangle   in two ways

 

and

 

where equation (1) was used to replace   and   in these two equations. Substituting equations (2) and (5) in the   equation and equations (3) and (6) in the   equation gives

 

and

 

Since the numerators are equal

 

or

 

Since angle   and angle   are equal and the sides forming these angles are in the same ratio, triangles   and   are similar.

Similar angles   and   equal  , and similar angles   and   equal   Similar arguments yield the base angles of triangles   and  

In particular angle   is found to be   and from the figure we see that

 

Substituting yields

 

where equation (4) was used for angle   and therefore

 

Similarly the other angles of triangle   are found to be  

Side and area edit

The first Morley triangle has side lengths[5]

 

where R is the circumradius of the original triangle and A, B, and C are the angles of the original triangle. Since the area of an equilateral triangle is   the area of Morley's triangle can be expressed as

 

Morley's triangles edit

Morley's theorem entails 18 equilateral triangles. The triangle described in the trisector theorem above, called the first Morley triangle, has vertices given in trilinear coordinates relative to a triangle ABC as follows:

 

Another of Morley's equilateral triangles that is also a central triangle is called the second Morley triangle and is given by these vertices:

 

The third of Morley's 18 equilateral triangles that is also a central triangle is called the third Morley triangle and is given by these vertices:

 

The first, second, and third Morley triangles are pairwise homothetic. Another homothetic triangle is formed by the three points X on the circumcircle of triangle ABC at which the line XX −1 is tangent to the circumcircle, where X −1 denotes the isogonal conjugate of X. This equilateral triangle, called the circumtangential triangle, has these vertices:

 

A fifth equilateral triangle, also homothetic to the others, is obtained by rotating the circumtangential triangle π/6 about its center. Called the circumnormal triangle, its vertices are as follows:

 

An operation called "extraversion" can be used to obtain one of the 18 Morley triangles from another. Each triangle can be extraverted in three different ways; the 18 Morley triangles and 27 extravert pairs of triangles form the 18 vertices and 27 edges of the Pappus graph.[6]

Related triangle centers edit

The Morley center, X(356), centroid of the first Morley triangle, is given in trilinear coordinates by

 

1st Morley–Taylor–Marr center, X(357): The first Morley triangle is perspective to triangle  :[7] the lines each connecting a vertex of the original triangle with the opposite vertex of the Morley triangle concur at the point

 

See also edit

Notes edit

  1. ^ Bogomolny, Alexander, Morley's Miracle, Cut-the-knot, retrieved 2010-01-02
  2. ^ Bogomolny, Alexander, J. Conway's proof, Cut-the-knot, retrieved 2021-12-03
  3. ^ Conway, John (2006), "The Power of Mathematics" (PDF), in Blackwell, Alan; Mackay, David (eds.), Power, Cambridge University Press, pp. 36–50, ISBN 978-0-521-82377-7, retrieved 2010-10-08
  4. ^ Morley's Theorem in Spherical Geometry, Java applet.
  5. ^ Weisstein, Eric W. "First Morley Triangle". MathWorld. Retrieved 2021-12-03.
  6. ^ Guy (2007).
  7. ^ Fox, M. D.; and Goggins, J. R. "Morley's diagram generalised", Mathematical Gazette 87, November 2003, 453–467.

References edit

  • Connes, Alain (1998), "A new proof of Morley's theorem", Publications Mathématiques de l'IHÉS, S88: 43–46.
  • Connes, Alain (December 2004), "Symmetries" (PDF), European Mathematical Society Newsletter, 54.
  • Coxeter, H. S. M.; Greitzer, S. L. (1967), Geometry Revisited, The Mathematical Association of America, LCCN 67-20607
  • Francis, Richard L. (2002), "Modern Mathematical Milestones: Morley's Mystery" (PDF), Missouri Journal of Mathematical Sciences, 14 (1), doi:10.35834/2002/1401016.
  • Guy, Richard K. (2007), "The lighthouse theorem, Morley & Malfatti—a budget of paradoxes" (PDF), American Mathematical Monthly, 114 (2): 97–141, doi:10.1080/00029890.2007.11920398, JSTOR 27642143, MR 2290364, S2CID 46275242, archived from the original (PDF) on 2010-04-01.
  • Oakley, C. O.; Baker, J. C. (1978), "The Morley trisector theorem", American Mathematical Monthly, 85 (9): 737–745, doi:10.2307/2321680, JSTOR 2321680, S2CID 56066204.
  • Taylor, F. Glanville; Marr, W. L. (1913–14), "The six trisectors of each of the angles of a triangle", Proceedings of the Edinburgh Mathematical Society, 33: 119–131, doi:10.1017/S0013091500035100.

External links edit