Properties and description
edit
Formally, if
G
{\displaystyle G}
is a group and
S
{\displaystyle S}
is a subset of
G
,
{\displaystyle G,}
the normal closure
ncl
G
(
S
)
{\displaystyle \operatorname {ncl} _{G}(S)}
of
S
{\displaystyle S}
is the intersection of all normal subgroups of
G
{\displaystyle G}
containing
S
{\displaystyle S}
:[ 1]
ncl
G
(
S
)
=
⋂
S
⊆
N
◃
G
N
.
{\displaystyle \operatorname {ncl} _{G}(S)=\bigcap _{S\subseteq N\triangleleft G}N.}
The normal closure
ncl
G
(
S
)
{\displaystyle \operatorname {ncl} _{G}(S)}
is the smallest normal subgroup of
G
{\displaystyle G}
containing
S
,
{\displaystyle S,}
[ 1] in the sense that
ncl
G
(
S
)
{\displaystyle \operatorname {ncl} _{G}(S)}
is a subset of every normal subgroup of
G
{\displaystyle G}
that contains
S
.
{\displaystyle S.}
The subgroup
ncl
G
(
S
)
{\displaystyle \operatorname {ncl} _{G}(S)}
is generated by the set
S
G
=
{
s
g
:
g
∈
G
}
=
{
g
−
1
s
g
:
g
∈
G
}
{\displaystyle S^{G}=\{s^{g}:g\in G\}=\{g^{-1}sg:g\in G\}}
of all conjugates of elements of
S
{\displaystyle S}
in
G
.
{\displaystyle G.}
Therefore one can also write
ncl
G
(
S
)
=
{
g
1
−
1
s
1
ϵ
1
g
1
…
g
n
−
1
s
n
ϵ
n
g
n
:
n
≥
0
,
ϵ
i
=
±
1
,
s
i
∈
S
,
g
i
∈
G
}
.
{\displaystyle \operatorname {ncl} _{G}(S)=\{g_{1}^{-1}s_{1}^{\epsilon _{1}}g_{1}\dots g_{n}^{-1}s_{n}^{\epsilon _{n}}g_{n}:n\geq 0,\epsilon _{i}=\pm 1,s_{i}\in S,g_{i}\in G\}.}
Any normal subgroup is equal to its normal closure. The conjugate closure of the empty set
∅
{\displaystyle \varnothing }
is the trivial subgroup .[ 2]
A variety of other notations are used for the normal closure in the literature, including
⟨
S
G
⟩
,
{\displaystyle \langle S^{G}\rangle ,}
⟨
S
⟩
G
,
{\displaystyle \langle S\rangle ^{G},}
⟨
⟨
S
⟩
⟩
G
,
{\displaystyle \langle \langle S\rangle \rangle _{G},}
and
⟨
⟨
S
⟩
⟩
G
.
{\displaystyle \langle \langle S\rangle \rangle ^{G}.}
Dual to the concept of normal closure is that of normal interior or normal core , defined as the join of all normal subgroups contained in
S
.
{\displaystyle S.}
[ 3]
Group presentations
edit
References
edit
^ a b Derek F. Holt; Bettina Eick; Eamonn A. O'Brien (2005). Handbook of Computational Group Theory . CRC Press. p. 14. ISBN 1-58488-372-3 .
^ Rotman, Joseph J. (1995). An introduction to the theory of groups . Graduate Texts in Mathematics. Vol. 148 (Fourth ed.). New York: Springer-Verlag . p. 32. doi :10.1007/978-1-4612-4176-8. ISBN 0-387-94285-8 . MR 1307623.
^ Robinson, Derek J. S. (1996). A Course in the Theory of Groups . Graduate Texts in Mathematics. Vol. 80 (2nd ed.). Springer-Verlag . p. 16. ISBN 0-387-94461-3 . Zbl 0836.20001.
^
Lyndon, Roger C. ; Schupp, Paul E. (2001). Combinatorial group theory . Classics in Mathematics. Springer-Verlag, Berlin. p. 87. ISBN 3-540-41158-5 . MR 1812024.