BREAKING NEWS
Ohnesorge number

## Summary

The Ohnesorge number (Oh) is a dimensionless number that relates the viscous forces to inertial and surface tension forces. The number was defined by Wolfgang von Ohnesorge in his 1936 doctoral thesis.[1]

It is defined as:

${\displaystyle \mathrm {Oh} ={\frac {\mu }{\sqrt {\rho \sigma L}}}={\frac {\sqrt {\mathrm {We} }}{\mathrm {Re} }}\sim {\frac {\mbox{viscous forces}}{\sqrt {{\mbox{inertia}}\cdot {\mbox{surface tension}}}}}}$

Where

• μ is the dynamic viscosity of the liquid
• ρ is the density of the liquid
• σ is the surface tension
• L is the characteristic length scale (typically drop diameter)
• Re is the Reynolds number
• We is the Weber number

## Applications

The Ohnesorge number for a 3 mm diameter rain drop is typically ~0.002. Larger Ohnesorge numbers indicate a greater influence of the viscosity.

This is often used to relate to free surface fluid dynamics such as dispersion of liquids in gases and in spray technology.[2][3]

In inkjet printing, liquids whose Ohnesorge number is less than 1 and greater than 0.1 are jettable (1<Z<10 where Z is the reciprocal of the Ohnesorge number).[1][4]

• Laplace number - There is an inverse relationship, ${\displaystyle \mathrm {Oh} =1/{\sqrt {\mathrm {La} }}}$, between the Laplace number and the Ohnesorge number. It is more historically correct to use the Ohnesorge number, but often mathematically neater to use the Laplace number.
3. ^ Ohnesorge, W (1936). "Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen". Zeitschrift für Angewandte Mathematik und Mechanik. 16 (6): 355–358. Bibcode:1936ZaMM...16..355O. doi:10.1002/zamm.19360160611. English translation: Ohnesorge, Wolfgang von (2019). "The formation of drops by nozzles and the breakup of liquid jets". doi:10.26153/tsw/3391. Cite journal requires |journal= (help)