Potassium niobate

Summary

Potassium niobate (KNbO3) is an inorganic compound with the formula KNbO3. A colorless solid, it is classified as a perovskite ferroelectric material.[2] It exhibits nonlinear optical properties, and is a component of some lasers.[3] Nanowires of potassium niobate have been used to produce tunable coherent light.

Potassium niobate
Names
IUPAC name
Potassium niobate
Other names
niobate, niobium potassium oxide, potassium columbate
Identifiers
  • 12030-85-2
3D model (JSmol)
  • Interactive image
ChemSpider
  • 10605809
ECHA InfoCard 100.031.573 Edit this at Wikidata
  • 16217044
  • DTXSID90923315 Edit this at Wikidata
  • InChI=1S/K.Nb.3O/q+1;;;;-1
    Key: UKDIAJWKFXFVFG-UHFFFAOYSA-N
  • [O-][Nb](=O)=O.[K+]
Properties
KNbO3
Molar mass 180.003 g·mol−1
Appearance White rhombohedral crystals
Density 4.640 g/cm3
Melting point ≈ 1100 °C[1]
Hazards
Lethal dose or concentration (LD, LC):
3000 mg/kg (oral, rat)
Related compounds
Other anions
Potassium chlorate
Potassium bromate
Other cations
Lithium niobate
Strontium barium niobate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Structure edit

On cooling from high temperature, KNbO3 undergoes a series of structural phase transitions. At 435 °C, the crystal symmetry changes from cubic centrosymmetric (Pm3m) to tetragonal non-centrosymmetric (P4mm). On further cooling, at 225 °C the crystal symmetry changes from tetragonal (P4mm) to orthorhombic (Amm2) and at −50 °C from orthorhombic (Amm2) to rhombohedral (R3m).

 
Crystal structure of Potassium Niobate

Applications and research edit

In addition to research in electronic memory storage,[4] potassium niobate is used in resonant doubling.[5] This technique allows small infrared lasers to convert output into blue light, a critical technology for the production of blue lasers and technology dependent upon them.

Potassium niobate has been found useful in many different areas of materials science,[4] including properties of lasers,[5] quantum teleportation,[6] and it has been used to study the optical properties of particulate composite materials.[7]


Safety edit

The LD50 for potassium niobate is 3000 mg/kg (oral, rat).


References edit

  1. ^ CRC Handbook, 90th Edition (03 Jun 2009) ISBN 1-4200-9084-4, section 4: Physical Constants of Inorganic Compounds, page 83
  2. ^ Hewat, A W (1973-03-28). "Soft modes and the structure, spontaneous polarization and Curie constants of perovskite ferroelectrics: tetragonal potassium niobate". Journal of Physics C: Solid State Physics. 6 (6): 1074–1084. Bibcode:1973JPhC....6.1074H. doi:10.1088/0022-3719/6/6/020. ISSN 0022-3719.
  3. ^ Palik, Edward D. (1998). Handbook of Optical Constants of Solids 3. Academic Press. p. 821. ISBN 978-0-12-544423-1. Retrieved 13 December 2012.
  4. ^ a b "In Science Fields". The Science News-Letter. 62 (17): 264–265. 1952-10-25. doi:10.2307/3931381. JSTOR 3931381. – via JSTOR (subscription required)
  5. ^ a b Regalado, Antonio (1995-03-31). "Blue-Light Special". Science. New Series. 267 (5206): 1920. Bibcode:1995Sci...267.1920R. doi:10.1126/science.267.5206.1920. JSTOR 2886437. PMID 17770099. – via JSTOR (subscription required)
  6. ^ Furusawa, A.; J. L. Sørensen; S. L. Braunstein; C. A. Fuchs; H. J. Kimble; E. S. Polzik (1998-10-23). "Unconditional Quantum Teleportation". Science. New Series. 282 (5389): 706–709. Bibcode:1998Sci...282..706F. doi:10.1126/science.282.5389.706. JSTOR 2899257. PMID 9784123. – via JSTOR (subscription required)
  7. ^ Lakhtakia, Akhlesh; Tom G. Mackay (2007-02-08). "Electrical Control of the Linear Optical Properties of Particulate Composite Materials". Proceedings of the Royal Society A. 463 (2078): 583–592. arXiv:physics/0607274. Bibcode:2007RSPSA.463..583L. doi:10.1098/rspa.2006.1783. JSTOR 20209136. S2CID 119419605. – via JSTOR (subscription required)