Rad50

Summary

DNA repair protein RAD50, also known as RAD50, is a protein that in humans is encoded by the RAD50 gene.[5]

RAD50
Identifiers
AliasesRAD50, NBSLD, RAD502, hRad50, Rad50, RAD50 double strand break repair protein
External IDsOMIM: 604040, 613078 MGI: 109292 HomoloGene: 38092 GeneCards: RAD50
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_133482
NM_005732

NM_009012

RefSeq (protein)

NP_005723

n/a

Location (UCSC)Chr 5: 132.56 – 132.65 MbChr 11: 53.54 – 53.6 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function edit

The protein encoded by this gene is highly similar to Saccharomyces cerevisiae Rad50, a protein involved in DNA double-strand break repair. This protein forms a complex with MRE11 and NBS1 (also known as Xrs2 in yeast). This MRN complex (MRX complex in yeast) binds to broken DNA ends and displays numerous enzymatic activities that are required for double-strand break repair by nonhomologous end-joining or homologous recombination. Gene knockout studies of the mouse homolog of Rad50 suggest it is essential for cell growth and viability. Two alternatively spliced transcript variants of Rad50, which encode distinct proteins, have been reported.[5]

Structure edit

Rad50 is a member of the structural maintenance of chromosomes (SMC) family of proteins.[6] Like other SMC proteins, Rad50 contains a long internal coiled-coil domain that folds back on itself, bringing the N- and C-termini together to form a globular ABC ATPase head domain. Rad50 can dimerize both through its head domain and through a zinc-binding dimerization motif at the opposite end of the coiled-coil known as the “zinc-hook”.[7] Results from atomic force microscopy suggest that in free Mre11-Rad50-Nbs1 complexes, the zinc-hooks of a single Rad50 dimer associate to form a closed loop, while the zinc-hooks snap apart upon binding DNA, adopting a conformation that is thought to enable zinc-hook-mediated tethering of broken DNA ends.[8]

Interactions edit

Rad50 has been shown to interact with:

Evolutionary ancestry edit

Rad50 protein has been mainly studied in eukaryotes. However, recent work has shown that orthologs of the Rad50 protein are also conserved in extant prokaryotic archaea where they likely function in homologous recombinational repair.[20] In the hyperthermophilic archeon Sulfolobus acidocaldarius, the Rad50 and Mre11 proteins interact and appear to have an active role in repair of DNA damages introduced by gamma radiation.[21] These findings suggest that eukaryotic Rad50 may be descended from an ancestral archaeal Rad50 protein that served a role in homologous recombinational repair of DNA damage.

Diseases edit

Human RAD50 deficiency is an autosomal recessive syndrome that has been reported in patients with microcephaly and short stature. Their clinical phenotype resembled Nijmegen Breakage Syndrome. Cells from these patients showed increased radiosensitity with an impaired response to chromosome breaks. [22][23][24]

See also edit

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000113522 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000020380 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "Entrez Gene: RAD50 RAD50 homolog (S. cerevisiae)".
  6. ^ Kinoshita E, van der Linden E, Sanchez H, Wyman C (2009). "RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function?". Chromosome Res. 17 (2): 277–88. doi:10.1007/s10577-008-9018-6. PMC 4494100. PMID 19308707.
  7. ^ Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT, Carney JP, Petrini JH, Tainer JA (August 2002). "The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair". Nature. 418 (6897): 562–6. Bibcode:2002Natur.418..562H. doi:10.1038/nature00922. PMID 12152085. S2CID 4414704.
  8. ^ Moreno-Herrero F, de Jager M, Dekker NH, Kanaar R, Wyman C, Dekker C (September 2005). "Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA". Nature. 437 (7057): 440–3. Bibcode:2005Natur.437..440M. doi:10.1038/nature03927. PMID 16163361. S2CID 4357195.
  9. ^ a b c Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures". Genes Dev. 14 (8): 927–39. doi:10.1101/gad.14.8.927. PMC 316544. PMID 10783165.
  10. ^ a b Chiba N, Parvin JD (2001). "Redistribution of BRCA1 among four different protein complexes following replication blockage". J. Biol. Chem. 276 (42): 38549–54. doi:10.1074/jbc.M105227200. PMID 11504724.
  11. ^ Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, Chen PL, Sharp ZD, Lee WH (1999). "Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response". Science. 285 (5428): 747–50. doi:10.1126/science.285.5428.747. PMID 10426999.
  12. ^ Dolganov GM, Maser RS, Novikov A, Tosto L, Chong S, Bressan DA, Petrini JH (1996). "Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair". Mol. Cell. Biol. 16 (9): 4832–41. doi:10.1128/MCB.16.9.4832. PMC 231485. PMID 8756642.
  13. ^ a b Trujillo KM, Yuan SS, Lee EY, Sung P (1998). "Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95". J. Biol. Chem. 273 (34): 21447–50. doi:10.1074/jbc.273.34.21447. PMID 9705271.
  14. ^ Goedecke W, Eijpe M, Offenberg HH, van Aalderen M, Heyting C (1999). "Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis". Nat. Genet. 23 (2): 194–8. doi:10.1038/13821. PMID 10508516. S2CID 13443404.
  15. ^ Cerosaletti KM, Concannon P (2003). "Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation". J. Biol. Chem. 278 (24): 21944–51. doi:10.1074/jbc.M211689200. PMID 12679336.
  16. ^ Desai-Mehta A, Cerosaletti KM, Concannon P (2001). "Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization". Mol. Cell. Biol. 21 (6): 2184–91. doi:10.1128/MCB.21.6.2184-2191.2001. PMC 86852. PMID 11238951.
  17. ^ Xiao J, Liu CC, Chen PL, Lee WH (2001). "RINT-1, a novel Rad50-interacting protein, participates in radiation-induced G(2)/M checkpoint control". J. Biol. Chem. 276 (9): 6105–11. doi:10.1074/jbc.M008893200. PMID 11096100.
  18. ^ a b O'Connor MS, Safari A, Liu D, Qin J, Songyang Z (2004). "The human Rap1 protein complex and modulation of telomere length". J. Biol. Chem. 279 (27): 28585–91. doi:10.1074/jbc.M312913200. PMID 15100233.
  19. ^ Zhu XD, Küster B, Mann M, Petrini JH, de Lange T (2000). "Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres". Nat. Genet. 25 (3): 347–52. doi:10.1038/77139. PMID 10888888. S2CID 6689794.
  20. ^ White MF (January 2011). "Homologous recombination in the archaea: the means justify the ends". Biochem. Soc. Trans. 39 (1): 15–9. doi:10.1042/BST0390015. PMID 21265740. S2CID 239399.
  21. ^ Quaiser A, Constantinesco F, White MF, Forterre P, Elie C (2008). "The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius". BMC Mol. Biol. 9: 25. doi:10.1186/1471-2199-9-25. PMC 2288612. PMID 18294364.
  22. ^ Waltes R, Kalb R, Gatei M, Kijas AW, Stumm M, Sobeck A, Wieland B, Varon R, Lerenthal Y, Lavin MF, Schindler D, Dörk T (2009). "Human RAD50 deficiency in a Nijmegen Breakage Syndrome-like disorder". Am. J. Hum. Genet. 84 (5): 605–16. doi:10.1016/j.ajhg.2009.04.010. PMC 2681000. PMID 19409520.
  23. ^ Ragamin A, Yigit G, Bousset K, Beleggia F, Verheijen FW, de Wit MY, Strom TM, Dörk T, Wollnik B, Mancini GM (2020). "Human RAD50 deficiency: Confirmation of a distinctive phenotype". Am. J. Med. Genet. 182 (6): 1378–86. doi:10.1002/ajmg.a.61570. PMC 7318339. PMID 32212377.
  24. ^ Chansel-Da Cruz M, Hohl M, Ceppi I, Kermasson L, Maggiorella L, Modesti M, de Villartay J, Ileri T, Cejka P, Petrini J, Revy P (2020). "A Disease-Causing Single Amino Acid Deletion in the Coiled-Coil Domain of RAD50 Impairs MRE11 Complex Functions in Yeast and Humans". Cell Rep. 33 (13): 108559. doi:10.1016/j.celrep.2020.108559. PMC 7788285. PMID 33378670.

Further reading edit

  • Stracker TH, Theunissen JW, Morales M, Petrini JH (2005). "The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together". DNA Repair (Amst.). 3 (8–9): 845–54. doi:10.1016/j.dnarep.2004.03.014. PMID 15279769.
  • Dolganov GM, Maser RS, Novikov A, et al. (1996). "Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair". Mol. Cell. Biol. 16 (9): 4832–41. doi:10.1128/MCB.16.9.4832. PMC 231485. PMID 8756642.
  • Maser RS, Monsen KJ, Nelms BE, Petrini JH (1997). "hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks". Mol. Cell. Biol. 17 (10): 6087–96. doi:10.1128/MCB.17.10.6087. PMC 232458. PMID 9315668.
  • Carney JP, Maser RS, Olivares H, et al. (1998). "The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response". Cell. 93 (3): 477–86. doi:10.1016/S0092-8674(00)81175-7. PMID 9590181. S2CID 14548642.
  • Paull TT, Gellert M (1998). "The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks". Mol. Cell. 1 (7): 969–79. doi:10.1016/S1097-2765(00)80097-0. PMID 9651580.
  • Trujillo KM, Yuan SS, Lee EY, Sung P (1998). "Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95". J. Biol. Chem. 273 (34): 21447–50. doi:10.1074/jbc.273.34.21447. PMID 9705271.
  • Paull TT, Gellert M (1999). "Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex". Genes Dev. 13 (10): 1276–88. doi:10.1101/gad.13.10.1276. PMC 316715. PMID 10346816.
  • Kim KK, Shin BA, Seo KH, et al. (1999). "Molecular cloning and characterization of splice variants of human RAD50 gene". Gene. 235 (1–2): 59–67. doi:10.1016/S0378-1119(99)00215-2. PMID 10415333.
  • Zhong Q, Chen CF, Li S, et al. (1999). "Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response". Science. 285 (5428): 747–50. doi:10.1126/science.285.5428.747. PMID 10426999.
  • Wang Y, Cortez D, Yazdi P, et al. (2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures". Genes Dev. 14 (8): 927–39. doi:10.1101/gad.14.8.927. PMC 316544. PMID 10783165.
  • Gatei M, Young D, Cerosaletti KM, et al. (2000). "ATM-dependent phosphorylation of nibrin in response to radiation exposure". Nat. Genet. 25 (1): 115–9. doi:10.1038/75508. PMID 10802669. S2CID 23521589.
  • Zhao S, Weng YC, Yuan SS, et al. (2000). "Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products". Nature. 405 (6785): 473–7. Bibcode:2000Natur.405..473Z. doi:10.1038/35013083. PMID 10839544. S2CID 4428170.
  • Zhu XD, Küster B, Mann M, et al. (2000). "Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres". Nat. Genet. 25 (3): 347–52. doi:10.1038/77139. PMID 10888888. S2CID 6689794.
  • Paull TT, Rogakou EP, Yamazaki V, et al. (2001). "A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage". Curr. Biol. 10 (15): 886–95. doi:10.1016/S0960-9822(00)00610-2. PMID 10959836. S2CID 16108315.
  • Xiao J, Liu CC, Chen PL, Lee WH (2001). "RINT-1, a novel Rad50-interacting protein, participates in radiation-induced G(2)/M checkpoint control". J. Biol. Chem. 276 (9): 6105–11. doi:10.1074/jbc.M008893200. PMID 11096100.
  • Desai-Mehta A, Cerosaletti KM, Concannon P (2001). "Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization". Mol. Cell. Biol. 21 (6): 2184–91. doi:10.1128/MCB.21.6.2184-2191.2001. PMC 86852. PMID 11238951.
  • Buscemi G, Savio C, Zannini L, et al. (2001). "Chk2 activation dependence on Nbs1 after DNA damage". Mol. Cell. Biol. 21 (15): 5214–22. doi:10.1128/MCB.21.15.5214-5222.2001. PMC 87245. PMID 11438675.
  • Chiba N, Parvin JD (2001). "Redistribution of BRCA1 among four different protein complexes following replication blockage". J. Biol. Chem. 276 (42): 38549–54. doi:10.1074/jbc.M105227200. PMID 11504724.
  • Grenon M, Gilbert C, Lowndes NF (2001). "Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex". Nat. Cell Biol. 3 (9): 844–7. doi:10.1038/ncb0901-844. PMID 11533665. S2CID 32286986.
  • de Jager M, van Noort J, van Gent DC, et al. (2002). "Human Rad50/Mre11 is a flexible complex that can tether DNA ends". Mol. Cell. 8 (5): 1129–35. doi:10.1016/S1097-2765(01)00381-1. PMID 11741547.
  • M. Beikzadeh, M.P. Latham (2020). "The dynamic nature of the Mre11-Rad50 DNA break repair complex". Progress in Biophysics and Molecular Biology. 163: 14–22. doi:10.1016/j.pbiomolbio.2020.10.007. PMC 8065065. PMID 33121960.

External links edit