Rhombitriheptagonal tiling

Summary

Rhombitriheptagonal tiling
Rhombitriheptagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.4.7.4
Schläfli symbol rr{7,3} or
Wythoff symbol 3 | 7 2
Coxeter diagram CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png or CDel node.pngCDel split1-73.pngCDel nodes 11.png
Symmetry group [7,3], (*732)
Dual Deltoidal triheptagonal tiling
Properties Vertex-transitive

In geometry, the rhombitriheptagonal tiling is a semiregular tiling of the hyperbolic plane. At each vertex of the tiling there is one triangle and one heptagon, alternating between two squares. The tiling has Schläfli symbol rr{7, 3}. It can be seen as constructed as a rectified triheptagonal tiling, r{7,3}, as well as an expanded heptagonal tiling or expanded order-7 triangular tiling.

Dual tiling

The dual tiling is called a deltoidal triheptagonal tiling, and consists of congruent kites. It is formed by overlaying an order-3 heptagonal tiling and an order-7 triangular tiling.

Deltoidal triheptagonal tiling.svg

Related polyhedra and tilings

From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.

Uniform heptagonal/triangular tilings
Symmetry: [7,3], (*732) [7,3]+, (732)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 3.pngCDel node h.png
Heptagonal tiling.svg Truncated heptagonal tiling.svg Triheptagonal tiling.svg Truncated order-7 triangular tiling.svg Order-7 triangular tiling.svg Rhombitriheptagonal tiling.svg Truncated triheptagonal tiling.svg Snub triheptagonal tiling.svg
{7,3} t{7,3} r{7,3} t{3,7} {3,7} rr{7,3} tr{7,3} sr{7,3}
Uniform duals
CDel node f1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Order-7 triangular tiling.svg Order-7 triakis triangular tiling.svg 7-3 rhombille tiling.svg Heptakis heptagonal tiling.svg Heptagonal tiling.svg Deltoidal triheptagonal tiling.svg 3-7 kisrhombille.svg 7-3 floret pentagonal tiling.svg
V73 V3.14.14 V3.7.3.7 V6.6.7 V37 V3.4.7.4 V4.6.14 V3.3.3.3.7

Symmetry mutations

This tiling is topologically related as a part of sequence of cantellated polyhedra with vertex figure (3.4.n.4), and continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.

*n32 symmetry mutation of dual expanded tilings: V3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
Figure
Config.
Spherical trigonal bipyramid.png
V3.4.2.4
Spherical rhombic dodecahedron.png
V3.4.3.4
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Spherical deltoidal hexecontahedron.png
V3.4.5.4
Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg
V3.4.6.4
Deltoidal triheptagonal tiling.svg
V3.4.7.4 H2-8-3-deltoidal.svg
V3.4.8.4
Deltoidal triapeirogonal til.png
V3.4.∞.4

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links

  • Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
  • Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
  • Hyperbolic and Spherical Tiling Gallery
  • KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
  • Hyperbolic Planar Tessellations, Don Hatch