Series expansion


In mathematics, a series expansion is a technique that expresses a function as an infinite sum, or series, of simpler functions. It is a method for calculating a function that cannot be expressed by just elementary operators (addition, subtraction, multiplication and division).[1]

Approximation of cosine by a Taylor series
An animation showing the cosine function being approximated by successive truncations of its Maclaurin series.

The resulting so-called series often can be limited to a finite number of terms, thus yielding an approximation of the function. The fewer terms of the sequence are used, the simpler this approximation will be. Often, the resulting inaccuracy (i.e., the partial sum of the omitted terms) can be described by an equation involving Big O notation (see also asymptotic expansion). The series expansion on an open interval will also be an approximation for non-analytic functions.[2][verification needed]

Types of series expansionsEdit

There are several kinds of series expansions, listed below.

A Taylor series is a power series based on a function's derivatives at a single point.[3] More specifically, if a function   is infinitely differentiable around a point  , then the Taylor series of f around this point is given by   under the convention  .[3][4] The Maclaurin series of a f is its Taylor series about  .[5][4] A Laurent series is a generalization of the Taylor series, allowing negative exponent values; it takes the form   and converges in an annulus.[6]

Convergence and divergence of partial sums of the Dirichlet series defining the Riemann zeta function. Here, the yellow line represents the first fifty successive partial sums   the magenta dotted line represents   and the green dot represents   as s is varied from -0.5 to 1.5.

A general Dirichlet series is a series of the form   One important special case of this is the ordinary Dirichlet series  [7] Used in number theory.[citation needed]

A Fourier series is an expansion of periodic functions as a sum of many sine and cosine functions.[8] More specifically, the Fourier series of a function   of period   is given by the expression

where the coefficients are given by the formulae[8][9]
In acoustics, e.g., the fundamental tone and the overtones together form an example of a Fourier series.[citation needed]

Newtonian series[citation needed]

Legendre polynomials: Used in physics to describe an arbitrary electrical field as a superposition of a dipole field, a quadrupole field, an octupole field, etc.[citation needed]

Zernike polynomials: Used in optics to calculate aberrations of optical systems. Each term in the series describes a particular type of aberration.[citation needed]

The relative error in a truncated Stirling series vs. n, for 0 to 5 terms. The kinks in the curves represent points where the truncated series coincides with  

The Stirling series

is an approximation of the log-gamma function.[10]


The following is the Taylor series of  :


The Dirichlet series of the Riemann zeta function is



  1. ^ "Series and Expansions". Mathematics LibreTexts. 2013-11-07. Retrieved 2021-12-24.
  2. ^ Gil, Amparo; Segura, Javier; Temme, Nico M. (2007-01-01). Numerical Methods for Special Functions. SIAM. ISBN 978-0-89871-782-2.
  3. ^ a b "Taylor series - Encyclopedia of Mathematics". 27 December 2013. Retrieved 22 March 2022.
  4. ^ a b Edwards, C. Henry; Penney, David E. (2008). Elementary Differential Equations with Boundary Value Problems. p. 196. ISBN 978-0-13-600613-8.
  5. ^ Weisstein, Eric W. "Maclaurin Series". Retrieved 2022-03-22.
  6. ^ "Laurent series - Encyclopedia of Mathematics". Retrieved 2022-03-22.
  7. ^ a b "Dirichlet series - Encyclopedia of Mathematics". 26 January 2022. Retrieved 22 March 2022.
  8. ^ a b "Fourier series - Encyclopedia of Mathematics". Retrieved 2022-03-22.
  9. ^ Edwards, C. Henry; Penney, David E. (2008). Elementary Differential Equations with Boundary Value Problems. pp. 558, 564. ISBN 978-0-13-600613-8.
  10. ^ "DLMF: 5.11 Asymptotic Expansions". Retrieved 22 March 2022.
  11. ^ Weisstein, Eric W. "Exponential Function". Retrieved 2021-08-12.
  12. ^ "Exponential function - Encyclopedia of Mathematics". 5 June 2020. Retrieved 12 August 2021.{{cite web}}: CS1 maint: url-status (link)