Small stellated 120-cell | |
---|---|
Orthogonal projection | |
Type | Schläfli-Hess polytope |
Cells | 120 {5/2,5} |
Faces | 720 {5/2} |
Edges | 1200 |
Vertices | 120 |
Vertex figure | {5,3} |
Schläfli symbol | {5/2,5,3} |
Coxeter-Dynkin diagram | |
Symmetry group | H_{4}, [3,3,5] |
Dual | Icosahedral 120-cell |
Properties | Regular |
In geometry, the small stellated 120-cell or stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,5,3}. It is one of 10 regular Schläfli-Hess polytopes.
It has the same edge arrangement as the great grand 120-cell, and also shares its 120 vertices with the 600-cell and eight other regular star 4-polytopes. It may also be seen as the first stellation of the 120-cell. In this sense it could be seen as analogous to the three-dimensional small stellated dodecahedron, which is the first stellation of the dodecahedron. Indeed, the small stellated 120-cell is dual to the icosahedral 120-cell, which could be taken as a 4D analogue of the great dodecahedron, dual of the small stellated dodecahedron.
The edges of the small stellated 120-cell are τ^{2} as long as those of the 120-cell core inside the 4-polytope.
H_{3} | A_{2} / B_{3} / D_{4} | A_{3} / B_{2} |
---|---|---|