Snub square tiling

Summary

Snub square tiling
Snub square tiling
Type Semiregular tiling
Vertex configuration Tiling snub 4-4 left vertfig.svg
3.3.4.3.4
Schläfli symbol s{4,4}
sr{4,4} or
Wythoff symbol | 4 4 2
Coxeter diagram CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png or CDel node h.pngCDel split1-44.pngCDel nodes hh.png
Symmetry p4g, [4+,4], (4*2)
Rotation symmetry p4, [4,4]+, (442)
Bowers acronym Snasquat
Dual Cairo pentagonal tiling
Properties Vertex-transitive

In geometry, the snub square tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. Its Schläfli symbol is s{4,4}.

Conway calls it a snub quadrille, constructed by a snub operation applied to a square tiling (quadrille).

There are 3 regular and 8 semiregular tilings in the plane.

Uniform coloringsEdit

There are two distinct uniform colorings of a snub square tiling. (Naming the colors by indices around a vertex (3.3.4.3.4): 11212, 11213.)

Coloring  
11212
 
11213
Symmetry 4*2, [4+,4], (p4g) 442, [4,4]+, (p4)
Schläfli symbol s{4,4} sr{4,4}
Wythoff symbol   | 4 4 2
Coxeter diagram            

Circle packingEdit

The snub square tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 5 other circles in the packing (kissing number).[1]

 

Wythoff constructionEdit

The snub square tiling can be constructed as a snub operation from the square tiling, or as an alternate truncation from the truncated square tiling.

An alternate truncation deletes every other vertex, creating a new triangular faces at the removed vertices, and reduces the original faces to half as many sides. In this case starting with a truncated square tiling with 2 octagons and 1 square per vertex, the octagon faces into squares, and the square faces degenerate into edges and 2 new triangles appear at the truncated vertices around the original square.

If the original tiling is made of regular faces the new triangles will be isosceles. Starting with octagons which alternate long and short edge lengths, derived from a regular dodecagon, will produce a snub tiling with perfect equilateral triangle faces.

Example:

 
Regular octagons alternately truncated
(Alternate
truncation)
 
Isosceles triangles (Nonuniform tiling)
 
Nonregular octagons alternately truncated
(Alternate
truncation)
 
Equilateral triangles

Related tilingsEdit

Related k-uniform tilingsEdit

This tiling is related to the elongated triangular tiling which also has 3 triangles and two squares on a vertex, but in a different order, 3.3.3.4.4. The two vertex figures can be mixed in many k-uniform tilings.[2][3]

Related tilings of triangles and squares
snub square elongated triangular 2-uniform 3-uniform
p4g, (4*2) p2, (2222) p2, (2222) cmm, (2*22) p2, (2222)
 
[32434]
 
[3342]
 
[3342; 32434]
 
[3342; 32434]
 
[2: 3342; 32434]
 
[3342; 2: 32434]
                       

Related topological series of polyhedra and tilingEdit

The snub square tiling is third in a series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

4n2 symmetry mutations of snub tilings: 3.3.4.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracomp.
242 342 442 542 642 742 842 ∞42
Snub
figures
               
Config. 3.3.4.3.2 3.3.4.3.3 3.3.4.3.4 3.3.4.3.5 3.3.4.3.6 3.3.4.3.7 3.3.4.3.8 3.3.4.3.∞
Gyro
figures
       
Config. V3.3.4.3.2 V3.3.4.3.3 V3.3.4.3.4 V3.3.4.3.5 V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.∞

The snub square tiling is third in a series of snub polyhedra and tilings with vertex figure 3.3.n.3.n.

4n2 symmetry mutations of snub tilings: 3.3.n.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracompact
222 322 442 552 662 772 882 ∞∞2
Snub
figures
               
Config. 3.3.2.3.2 3.3.3.3.3 3.3.4.3.4 3.3.5.3.5 3.3.6.3.6 3.3.7.3.7 3.3.8.3.8 3.3.∞.3.∞
Gyro
figures
       
Config. V3.3.2.3.2 V3.3.3.3.3 V3.3.4.3.4 V3.3.5.3.5 V3.3.6.3.6 V3.3.7.3.7 V3.3.8.3.8 V3.3.∞.3.∞
Uniform tilings based on square tiling symmetry
Symmetry: [4,4], (*442) [4,4]+, (442) [4,4+], (4*2)
                                                     
                 
{4,4} t{4,4} r{4,4} t{4,4} {4,4} rr{4,4} tr{4,4} sr{4,4} s{4,4} Uniform duals                                                                      
V4.4.4.4 V4.8.8 V4.4.4.4 V4.8.8 V4.4.4.4 V4.4.4.4 V4.8.8 V3.3.4.3.4

See alsoEdit

ReferencesEdit

  1. ^ Order in Space: A design source book, Keith Critchlow, p.74-75, circle pattern C
  2. ^ Chavey, D. (1989). "Tilings by Regular Polygons—II: A Catalog of Tilings". Computers & Mathematics with Applications. 17: 147–165. doi:10.1016/0898-1221(89)90156-9.
  3. ^ "Archived copy". Archived from the original on 2006-09-09. Retrieved 2006-09-09.{{cite web}}: CS1 maint: archived copy as title (link)
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [1]
  • Klitzing, Richard. "2D Euclidean tilings s4s4s - snasquat - O10".
  • Grünbaum, Branko; Shephard, G. C. (1987). Tilings and Patterns. New York: W. H. Freeman. ISBN 0-7167-1193-1. (Chapter 2.1: Regular and uniform tilings, p. 58-65)
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. p38
  • Dale Seymour and Jill Britton, Introduction to Tessellations, 1989, ISBN 978-0866514613, pp. 50–56, dual p. 115

External linksEdit