Snub tetraheptagonal tiling


Snub tetraheptagonal tiling
Snub tetraheptagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration
Schläfli symbol sr{7,4} or
Wythoff symbol | 7 4 2
Coxeter diagram CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node h.png
Symmetry group [7,4]+, (742)
Dual Order-7-4 floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{7,4}.


Drawn in chiral pairs, with edges missing between black triangles:


Dual tilingEdit

The dual is called an order-7-4 floret pentagonal tiling, defined by face configuration V3.

Related polyhedra and tilingEdit

The snub tetraheptagonal tiling is sixth in a series of snub polyhedra and tilings with vertex figure

4n2 symmetry mutations of snub tilings:
Spherical Euclidean Compact hyperbolic Paracomp.
242 342 442 542 642 742 842 ∞42
Config. V3. V3. V3. V3. V3. V3. V3. V3.3.4.3.∞
Uniform heptagonal/square tilings
Symmetry: [7,4], (*742) [7,4]+, (742) [7+,4], (7*2) [7,4,1+], (*772)
{7,4} t{7,4} r{7,4} 2t{7,4}=t{4,7} 2r{7,4}={4,7} rr{7,4} tr{7,4} sr{7,4} s{7,4} h{4,7}
Uniform duals
V74 V4.14.14 V4.7.4.7 V7.8.8 V47 V4.4.7.4 V4.8.14 V3. V3. V77


  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See alsoEdit

External linksEdit

  • Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
  • Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
  • Hyperbolic and Spherical Tiling Gallery
  • KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
  • Hyperbolic Planar Tessellations, Don Hatch