Snub tetraoctagonal tiling

Summary

Snub tetraoctagonal tiling
Snub tetraoctagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.4.3.8
Schläfli symbol sr{8,4} or
Wythoff symbol | 8 4 2
Coxeter diagram CDel node h.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
Symmetry group [8,4]+, (842)
Dual Order-8-4 floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub tetraoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{8,4}.

ImagesEdit

Drawn in chiral pairs, with edges missing between black triangles:

  

Related polyhedra and tilingEdit

The snub tetraoctagonal tiling is seventh in a series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

4n2 symmetry mutations of snub tilings: 3.3.4.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracomp.
242 342 442 542 642 742 842 ∞42
Snub
figures
               
Config. 3.3.4.3.2 3.3.4.3.3 3.3.4.3.4 3.3.4.3.5 3.3.4.3.6 3.3.4.3.7 3.3.4.3.8 3.3.4.3.∞
Gyro
figures
       
Config. V3.3.4.3.2 V3.3.4.3.3 V3.3.4.3.4 V3.3.4.3.5 V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.∞
Uniform octagonal/square tilings
[8,4], (*842)
(with [8,8] (*882), [(4,4,4)] (*444) , [∞,4,∞] (*4222) index 2 subsymmetries)
(And [(∞,4,∞,4)] (*4242) index 4 subsymmetry)
     
=    
 
=     
=      
     
=    
     
=    
=     
 
=      
     
 
=     
     
 
=     
=     
     
 
 
=     
     
             
{8,4} t{8,4}
r{8,4} 2t{8,4}=t{4,8} 2r{8,4}={4,8} rr{8,4} tr{8,4}
Uniform duals
                                         
             
V84 V4.16.16 V(4.8)2 V8.8.8 V48 V4.4.4.8 V4.8.16
Alternations
[1+,8,4]
(*444)
[8+,4]
(8*2)
[8,1+,4]
(*4222)
[8,4+]
(4*4)
[8,4,1+]
(*882)
[(8,4,2+)]
(2*42)
[8,4]+
(842)
     
=     
     
=    
     
=     
     
=     
     
=    
     
=     
     
             
h{8,4} s{8,4} hr{8,4} s{4,8} h{4,8} hrr{8,4} sr{8,4} Alternation duals                                                    
V(4.4)4 V3.(3.8)2 V(4.4.4)2 V(3.4)3 V88 V4.44 V3.3.4.3.8

ReferencesEdit

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See alsoEdit

External linksEdit

  • Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
  • Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
  • Hyperbolic and Spherical Tiling Gallery
  • KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
  • Hyperbolic Planar Tessellations, Don Hatch