Solar eclipse of August 22, 1979

Summary

An annular solar eclipse occurred at the Moon's ascending node of the orbit on Wednesday, August 22, 1979. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. A small annular eclipse covered only 93% of the Sun in a very broad path, 953 km wide at maximum, and lasted 6 minutes and 3 seconds. This was the second solar eclipse in 1979, the first one a total solar eclipse on February 26.

Solar eclipse of August 22, 1979
Map
Type of eclipse
NatureAnnular
Gamma−0.9632
Magnitude0.9329
Maximum eclipse
Duration363 s (6 min 3 s)
Coordinates59°36′S 108°30′W / 59.6°S 108.5°W / -59.6; -108.5
Max. width of band953 km (592 mi)
Times (UTC)
Greatest eclipse17:22:38
References
Saros125 (52 of 73)
Catalog # (SE5000)9463

This was the last of 40 umbral eclipses of Solar Saros 125. The first was in 1276 and the last was in 1979. The total duration is 703 years.

Related eclipses edit

Eclipses in 1979 edit

Solar eclipses 1979–1982 edit

Each member in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.

Saros 125 edit

Solar saros 125, repeating every about 18 years and 11 days, contains 73 events. The series started with a partial solar eclipse on February 4, 1060. It has total eclipses from June 13, 1276, to July 16, 1330. It has hybrid eclipses on July 26, 1348, and August 7, 1366, and annular eclipses from August 17, 1384, to August 22, 1979. The series ends at member 73 as a partial eclipse on April 9, 2358. The longest total eclipse occurred on June 25, 1294, at 1 minute and 11 seconds; the longest annular eclipse occurred on July 10, 1907, at 7 minutes and 23 seconds.[1]

Series members 47–58 occur between 1881 and 2100:
47 48 49
 
June 28, 1889
 
July 10, 1907
 
July 20, 1925
50 51 52
 
August 1, 1943
 
August 11, 1961
 
August 22, 1979 53 54 55  
September 2, 1997
 
September 13, 2015
 
September 23, 2033
56 57 58
 
October 4, 2051
 
October 15, 2069
 
October 26, 2087

Tritos series edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events, progressing from south to north between June 10, 1964, and August 21, 2036
June 10–11 March 27–29 January 15–16 November 3 August 21–22
117 119 121 123 125
 
June 10, 1964
 
March 28, 1968
 
January 16, 1972
 
November 3, 1975
 
August 22, 1979 127 129 131 133 135  
June 11, 1983
 
March 29, 1987
 
January 15, 1991
 
November 3, 1994
 
August 22, 1998
137 139 141 143 145
 
June 10, 2002
 
March 29, 2006
 
January 15, 2010
 
November 3, 2013
 
August 21, 2017
147 149 151 153 155
 
June 10, 2021
 
March 29, 2025
 
January 14, 2029
 
November 3, 2032
 
August 21, 2036

Notes edit

  1. ^ Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.

References edit

  • Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
    • Google interactive map
    • Besselian elements