Solar eclipse of February 6, 2027

Summary

An annular solar eclipse will occur on Saturday, February 6, 2027. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Solar eclipse of February 6, 2027
Map
Type of eclipse
NatureAnnular
Gamma−0.2952
Magnitude0.9281
Maximum eclipse
Duration471 s (7 min 51 s)
Coordinates31°18′S 48°30′W / 31.3°S 48.5°W / -31.3; -48.5
Max. width of band282 km (175 mi)
Times (UTC)
Greatest eclipse16:00:48
References
Saros131 (51 of 70)
Catalog # (SE5000)9567

On February 6, 2027, the path of annularity will first pass through South America, visiting cities such as Castro, Chile and Viedma, Argentina. The eclipse will then pass across the South Atlantic Ocean, terminating on the West African coast, where it will also serve cities such as Abidjan, Ivory Coast; Accra, Ghana; Lomé, Togo; Cotonou, Benin; and Lagos, Nigeria. A partial eclipse will be visible in much of South America and the western half of Africa.

Images edit

 
Animated path

Related eclipses edit

Eclipses in 2027 edit

Solar eclipses 2026–2029 edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 2026 to 2029
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
121 2026 February 17
 
Annular
−0.97427 126 2026 August 12
 
Total
0.89774
131 2027 February 6
 
Annular
−0.29515 136 2027 August 2
 
Total
0.14209
141 2028 January 26
 
Annular
0.39014 146 2028 July 22
 
Total
−0.60557
151 2029 January 14
 
Partial
1.05532 156 2029 July 11
 
Partial
−1.41908

Partial solar eclipses on June 12, 2029, and December 5, 2029, occur in the next lunar year eclipse set.

Saros 131 edit

It is a part of Saros cycle 131, repeating every 18 years, 11 days, containing 70 events. The series started with partial solar eclipse on August 1, 1125. It contains total eclipses from March 27, 1522 through May 30, 1612 and hybrid eclipses from June 10, 1630 through July 24, 1702, and annular eclipses from August 4, 1720 through June 18, 2243. The series ends at member 70 as a partial eclipse on September 2, 2369. The longest duration of totality was only 58 seconds on May 30, 1612. All eclipses in this series occurs at the Moon’s ascending node.

Series members 33–70 occur between 1702 and 2369
33 34 35
 
July 24, 1702
 
August 4, 1720
 
August 15, 1738
36 37 38
 
August 25, 1756
 
September 6, 1774
 
September 16, 1792
39 40 41
 
September 28, 1810
 
October 9, 1828
 
October 20, 1846
42 43 44
 
October 30, 1864
 
November 10, 1882
 
November 22, 1900
45 46 47
 
December 3, 1918
 
December 13, 1936
 
December 25, 1954
48 49 50
 
January 4, 1973
 
January 15, 1991
 
January 26, 2009
51 52 53
 
February 6, 2027  
February 16, 2045
 
February 28, 2063
54 55 56
 
March 10, 2081
 
March 21, 2099
 
April 2, 2117
57 58 59
 
April 13, 2135
 
April 23, 2153
 
May 5, 2171
60 61 62
 
May 15, 2189
 
May 27, 2207
 
June 6, 2225
63 64 65
 
June 18, 2243
 
June 28, 2261
 
July 9, 2279
66 67 68
 
July 20, 2297
 
August 1, 2315
 
August 11, 2333
69 70
 
August 22, 2351
 
September 2, 2369

Metonic series edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events, progressing from south to north between July 1, 2000 and July 1, 2076
July 1–2 April 19–20 February 5–7 November 24–25 September 12–13
117 119 121 123 125
 
July 1, 2000
 
April 19, 2004
 
February 7, 2008
 
November 25, 2011
 
September 13, 2015
127 129 131 133 135
 
July 2, 2019
 
April 20, 2023
 
February 6, 2027  
November 25, 2030
 
September 12, 2034
137 139 141 143 145
 
July 2, 2038
 
April 20, 2042
 
February 5, 2046
 
November 25, 2049
 
September 12, 2053
147 149 151 153 155
 
July 1, 2057
 
April 20, 2061
 
February 5, 2065
 
November 24, 2068
 
September 12, 2072
157 159 161 163 165
 
July 1, 2076

References edit

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

External links edit

  • http://eclipse.gsfc.nasa.gov/SEplot/SEplot2001/SE2027Feb06A.GIF