Solar eclipse of May 20, 2050

Summary

A total solar eclipse will occur on May 20, 2050. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This eclipse is a hybrid eclipse, starting and ending as an annular solar eclipse.

Solar eclipse of May 20, 2050
Map
Type of eclipse
NatureHybrid
Gamma−0.8688
Magnitude1.0038
Maximum eclipse
Duration21 s (0 min 21 s)
Coordinates40°06′S 123°42′W / 40.1°S 123.7°W / -40.1; -123.7
Max. width of band27 km (17 mi)
Times (UTC)
Greatest eclipse20:42:50
References
Saros148 (23 of 75)
Catalog # (SE5000)9619

This hybrid eclipse is notable in that it does not hit land anywhere on Earth.

Related eclipses edit

Solar eclipses 2047–2050 edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Note: Partial lunar eclipses on January 26, 2047 and July 22, 2047 occur on the previous lunar year eclipse set.

Solar eclipse sets from 2047 to 2050
Descending node   Ascending node
118 June 23, 2047
 
Partial
123 December 16, 2047
 
Partial
128 June 11, 2048
 
Annular
133 December 5, 2048
 
Total
138 May 31, 2049
 
Annular
143 November 25, 2049
 
Hybrid
148 May 20, 2050
 
Hybrid
153 November 14, 2050
 
Partial

Saros 148 edit

Solar saros 148, repeating every about 18 years and 11 days, contains 75 events. The series started with a partial solar eclipse on September 21, 1653. It has annular eclipses on April 29, 2014, and May 9, 2032, and a hybrid eclipse on May 20, 2050. It has total eclipses from May 31, 2068, to August 3, 2771. The series ends at member 75 as a partial eclipse on December 12, 2987. The longest total eclipse will be on April 26, 2609, at 5 minutes and 23 seconds.[2]

Series members 15–25 occur between 1901 and 2100:
15 16 17
 
February 23, 1906
 
March 5, 1924
 
March 16, 1942
18 19 20
 
March 27, 1960
 
April 7, 1978
 
April 17, 1996
21 22 23
 
April 29, 2014
 
May 9, 2032
 
May 20, 2050 24 25  
May 31, 2068
 
June 11, 2086

Inex series edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings. In the 19th century:

  • Solar saros 140: total solar eclipse of October 29, 1818
  • Solar saros 141: annular solar eclipse of October 9, 1847
  • Solar saros 142: total solar eclipse of September 17, 1876

In the 22nd century:

  • Solar saros 150: partial solar eclipse of April 11, 2108
  • Solar saros 151: annular solar eclipse of March 21, 2137
  • Solar saros 152: total solar eclipse of March 2, 2166
  • Solar saros 153: annular solar eclipse of February 10, 2195

Metonic series edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.[3]

Octon series with 21 events between May 21, 1993 and August 2, 2065
May 20–21 March 8–9 December 25–26 October 13–14 August 1–2
98 100 102 104 106
May 21, 1955 March 9, 1959 December 26, 1962 October 14, 1966 August 2, 1970
108 110 112 114 116
May 21, 1974 March 9, 1978 December 26, 1981 October 14, 1985 August 1, 1989
118 120 122 124 126
 
May 21, 1993
 
March 9, 1997
 
December 25, 2000
 
October 14, 2004
 
August 1, 2008
128 130 132 134 136
 
May 20, 2012
 
March 9, 2016
 
December 26, 2019
 
October 14, 2023
 
August 2, 2027
138 140 142 144 146
 
May 21, 2031
 
March 9, 2035
 
December 26, 2038
 
October 14, 2042
 
August 2, 2046
148 150 152 154 156
 
May 20, 2050  
March 9, 2054
 
December 26, 2057
 
October 13, 2061
 
August 2, 2065
158 160 162 164 166
 
May 20, 2069
March 8, 2073 December 26, 2076 October 13, 2080 August 1, 2084

Notes edit

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved October 6, 2018.
  2. ^ Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.
  3. ^ Note S1: Eclipses & Predictions in Freeth, Tony (2014). "Eclipse Prediction on the Ancient Greek Astronomical Calculating Machine Known as the Antikythera Mechanism". PLOS ONE. 9 (7): e103275. Bibcode:2014PLoSO...9j3275F. doi:10.1371/journal.pone.0103275. PMC 4116162. PMID 25075747.

References edit

  • Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
    • Google interactive map
    • Besselian elements