Solar eclipse of May 30, 1965

Summary

A total solar eclipse occurred on May 30, 1965. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from northwestern Northland Region in New Zealand on May 31 (Monday), and Manuae in Cook Islands, Manuae and Motu One in French Polynesia, and Peru on May 30 (Sunday).

Solar eclipse of May 30, 1965
Map
Type of eclipse
NatureTotal
Gamma−0.4225
Magnitude1.0544
Maximum eclipse
Duration315 s (5 min 15 s)
Coordinates2°30′S 133°48′W / 2.5°S 133.8°W / -2.5; -133.8
Max. width of band198 km (123 mi)
Times (UTC)
Greatest eclipse21:17:31
References
Saros127 (55 of 82)
Catalog # (SE5000)9432

As most of the eclipse's path was over open ocean, a prolonged observation was made by a jet transport; flying parallel to the path of the eclipse at 587 mph (945 km/h), this gave scientists what was at the time the "longest probe in man's history into the conditions of a solar eclipse", for nearly ten minutes. The expedition involved scientists from NASA, Belgium, Italy, the Netherlands, and Switzerland; in total, 30 researchers and 13 separate research projects were represented on the plane. [1][2][3] The plane, operated by NASA, took off from Hilo, Hawaii, and met up with the path of the eclipse approximately 1,000 mi (1,600 km) south of there.[4] While mostly invisible from land, some ground-based observers in an 85-mile-wide strip of northern New Zealand were able to clearly view the event.[4]

Related eclipses edit

Solar eclipses of 1964–1967 edit

This eclipse is a member of a 1964–1967 series at alternating nodes every 6 synodic months.

Note: Partial solar eclipses on January 14, 1964 and July 9, 1964 belong to the previous lunar year set.

Solar eclipse series sets from 1964 to 1967
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117  
1964 June 10
Partial
−1.13926 122  
1964 December 4
Partial
1.11929
127  
1965 May 30Total −0.42251 132  
1965 November 23
Annular
0.39061
137  
1966 May 20
Annular
0.34672 142  
1966 November 12
Total
−0.33001
147  
1967 May 9
Partial
1.14218 152  
1967 November 2
Total (non-central)
−1.00067

Saros 127 edit

It is a part of Saros cycle 127, repeating every 18 years, 11 days, containing 82 events. The series started with partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular eclipses in this series. The series ends at member 82 as a partial eclipse on March 21, 2452. The longest duration of totality was 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occurs at the Moon’s ascending node.[5]

Series members 52–68 occur between 1901 and 2200
52 53 54
 
April 28, 1911
 
May 9, 1929
 
May 20, 1947
55 56 57
 
May 30, 1965  
June 11, 1983
 
June 21, 2001
58 59 60
 
July 2, 2019
 
July 13, 2037
 
July 24, 2055
61 62 63
 
August 3, 2073
 
August 15, 2091
August 26, 2109 (Partial)
64 65 66
September 6, 2127 (Partial September 16, 2145 (Partial) September 28, 2163 (Partial)
67 68
October 8, 2181 (Partial) October 19, 2199 (Partial)

Inex series edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic series edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between January 5, 1935 and August 11, 2018
January 4-5 October 23-24 August 10-12 May 30-31 March 18-19
111 113 115 117 119
 
January 5, 1935
 
August 12, 1942
 
May 30, 1946
 
March 18, 1950
121 123 125 127 129
 
January 5, 1954
 
October 23, 1957
 
August 11, 1961
 
May 30, 1965  
March 18, 1969
131 133 135 137 139
 
January 4, 1973
 
October 23, 1976
 
August 10, 1980
 
May 30, 1984
 
March 18, 1988
141 143 145 147 149
 
January 4, 1992
 
October 24, 1995
 
August 11, 1999
 
May 31, 2003
 
March 19, 2007
151 153 155
 
January 4, 2011
 
October 23, 2014
 
August 11, 2018

References edit

  1. ^ "Eclipse Picture Try Successful". Orlando Evening Star. Orlando, Florida. 1965-05-31. p. 12. Retrieved 2023-10-16 – via Newspapers.com.
  2. ^ "Probe of Eclipse History's Longest". The Courier. Waterloo, Iowa. 1965-05-31. p. 1. Retrieved 2023-10-16 – via Newspapers.com.
  3. ^ "Jet Transport 'Wins' Race With Moon". The Santa Fe New Mexican. Santa Fe, New Mexico. 1965-05-31. p. 1. Retrieved 2023-10-16 – via Newspapers.com.
  4. ^ a b "Eclipse studied from jet". The Age. Melbourne, Victoria, Victoria, Australia. 1965-06-01. p. 1. Retrieved 2023-10-16 – via Newspapers.com.
  5. ^ "Solar Saros series 127". NASA Goddard Space Flight Center. NASA. Retrieved 2 November 2017.

External links edit

  • Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
    • Google interactive map
    • Besselian elements
  • Russia expedition for solar eclipse of May 30, 1965 Archived August 8, 2009, at the Wayback Machine