Solar eclipse of November 25, 2049

Summary

A total solar eclipse will occur on November 25, 2049. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Solar eclipse of November 25, 2049
Map
Type of eclipse
NatureHybrid
Gamma0.2943
Magnitude1.0057
Maximum eclipse
Duration38 s (0 min 38 s)
Coordinates3°48′S 95°12′E / 3.8°S 95.2°E / -3.8; 95.2
Max. width of band21 km (13 mi)
Times (UTC)
Greatest eclipse5:33:48
References
Saros143 (25 of 72)
Catalog # (SE5000)9618

Images edit

 
Animated path

Related eclipses edit

Solar eclipses 2047–2050 edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Note: Partial lunar eclipses on January 26, 2047 and July 22, 2047 occur on the previous lunar year eclipse set.

Solar eclipse sets from 2047 to 2050
Descending node   Ascending node
118 June 23, 2047
 
Partial
123 December 16, 2047
 
Partial
128 June 11, 2048
 
Annular
133 December 5, 2048
 
Total
138 May 31, 2049
 
Annular
143 November 25, 2049
 
Hybrid
148 May 20, 2050
 
Hybrid
153 November 14, 2050
 
Partial

Saros 143 edit

It is a part of Saros cycle 143, repeating every 18 years, 11 days, containing 72 events. The series started with partial solar eclipse on March 7, 1617 and total event from June 24, 1797 through October 24, 1995. It has hybrid eclipses from November 3, 2013 through December 6, 2067, and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2873. The longest duration of totality was 3 minutes, 50 seconds on August 19, 1887. All eclipses in this series occurs at the Moon’s ascending node.

Series members 17–28 occur between 1741 and 2100
8 9 10
 
May 23, 1743
 
June 3, 1761
 
June 14, 1779
11 12 13
 
June 24, 1797
 
July 6, 1815
 
July 17, 1833
14 15 16
 
July 28, 1851
 
August 7, 1869
 
August 19, 1887
17 18 19
 
August 30, 1905
 
September 10, 1923
 
September 21, 1941
20 21 22
 
October 2, 1959
 
October 12, 1977
 
October 24, 1995
23 24 25
 
November 3, 2013
 
November 14, 2031
 
November 25, 2049 26 27 28  
December 6, 2067
 
December 16, 2085

Metonic series edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events, progressing from south to north between July 1, 2000 and July 1, 2076
July 1–2 April 19–20 February 5–7 November 24–25 September 12–13
117 119 121 123 125
 
July 1, 2000
 
April 19, 2004
 
February 7, 2008
 
November 25, 2011
 
September 13, 2015
127 129 131 133 135
 
July 2, 2019
 
April 20, 2023
 
February 6, 2027
 
November 25, 2030
 
September 12, 2034
137 139 141 143 145
 
July 2, 2038
 
April 20, 2042
 
February 5, 2046
 
November 25, 2049  
September 12, 2053
147 149 151 153 155
 
July 1, 2057
 
April 20, 2061
 
February 5, 2065
 
November 24, 2068
 
September 12, 2072
157 159 161 163 165
 
July 1, 2076

Notes edit

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

References edit

  • Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
    • Google interactive map
    • Besselian elements