Solar eclipse of September 10, 1923

Summary

A total solar eclipse occurred on September 10, 1923.

Solar eclipse of September 10, 1923
Map
Type of eclipse
NatureTotal
Gamma0.5149
Magnitude1.043
Maximum eclipse
Duration217 s (3 min 37 s)
Coordinates34°42′N 121°48′W / 34.7°N 121.8°W / 34.7; -121.8
Max. width of band167 km (104 mi)
Times (UTC)
Greatest eclipse20:47:29
References
Saros143 (18 of 72)
Catalog # (SE5000)9335
Photographed from Proto Libertad, Sonora, Mexico

A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

The path of totality started at the southeastern tip of Shiashkotan in Japan (now in Russia) on September 11, and crossed the Pacific Ocean, southwestern California including the whole Channel Islands, northwestern and northern Mexico, Yucatan Peninsula, British Honduras (today's Belize), Swan Islands, Honduras, and Serranilla Bank and Bajo Nuevo in Colombia on September 10. The eclipse was over 90% in Los Angeles, San Diego, and Santa Barbara on the Southern California coast.

Viewings edit

 
Howard Russell Butler painting composed in Lompoc, California

At Santa Catalina Island, off the coast of California, a large group of scientists gathered to observe the eclipse were foiled by clouds, with the Los Angeles Times saying that "nothing of the eclipse was seen save two glimpses that showed the crescent of the sun, a sickly, white watermelon rind with the wavering black moon and a few rags of black clouds fast blotting out the white light":[1]

All day the scientists from Yerkes Observatory of the University of Chicago, from the University of Wisconsin, from Dearborn University, from Drake University and Carleton College, had rehearsed and rehearsed to the counting of the seconds and there they stood now while the moon covered the sun and the world was dark and still, and though the counter counted there was no possibility of taking pictures; no chance of seeing anything but that gray, blue, purple shadow moving across the sky.[1]

Even as late as 11:30 when the eclipse began, the scientists had hopes. They had come thousands of miles, had worked hard, had spent much money, all for a few minutes of clear sky. They had worked in the sweltering sun for weeks and weeks 1302 feet above the sea. There had not been one moment of one day that was not flooded with sunshine. "And surely," said Prof. Edwin Frost of the University of Chicago, "surely we will have these few minutes today."[1]

In Bakersfield, where the last eclipse of the Sun had taken place 123 years earlier, many watched the eclipse from streets, chickens were confused, and "all the astronomical apparatus of Bakersfield" was trained on the eclipse.[2] In New York City the eclipse, while partial, was viewed successfully; in the area of totality, it was "studied by astronomers who [were] depending on it to help them test out Einstein's famous theory of relativity and whether light rays are bent by the attraction of gravity".[3]

Related eclipses edit

Solar eclipses of 1921–1924 edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

Solar eclipse series sets from 1921 to 1924
Descending node   Ascending node
118 April 8, 1921
 
Annular
123 October 1, 1921
 
Total
128 March 28, 1922
 
Annular
133 September 21, 1922
 
Total
138 March 17, 1923
 
Annular
143 September 10, 1923
 
Total
148 March 5, 1924
 
Partial
153 August 30, 1924
 
Partial

Solar 143 edit

It is a part of Saros cycle 143, repeating every 18 years, 11 days, containing 72 events. The series started with partial solar eclipse on March 7, 1617 and total event from June 24, 1797 through October 24, 1995. It has hybrid eclipses from November 3, 2013 through December 6, 2067, and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2873. The longest duration of totality was 3 minutes, 50 seconds on August 19, 1887. All eclipses in this series occurs at the Moon’s ascending node.

Series members 17–28 occur between 1741 and 2100
8 9 10
 
May 23, 1743
 
June 3, 1761
 
June 14, 1779
11 12 13
 
June 24, 1797
 
July 6, 1815
 
July 17, 1833
14 15 16
 
July 28, 1851
 
August 7, 1869
 
August 19, 1887
17 18 19
 
August 30, 1905
 
September 10, 1923  
September 21, 1941
20 21 22
 
October 2, 1959
 
October 12, 1977
 
October 24, 1995
23 24 25
 
November 3, 2013
 
November 14, 2031
 
November 25, 2049
26 27 28
 
December 6, 2067
 
December 16, 2085

Notes edit

  1. ^ a b c "SUN'S FROLIC PRIVATE". The Los Angeles Times. Los Angeles, California. 1923-09-11. p. 2. Retrieved 2023-10-15 – via Newspapers.com.
  2. ^ "Moon's welcome shadow falls across face of September sun". Bakersfield Morning Echo. Bakersfield, California. 1923-09-11. p. 1. Retrieved 2023-10-15 – via Newspapers.com.
  3. ^ "Sun in Eclipse, Seen on Academy Roof, Looks Like Nicked Cheese". Times Union. Brooklyn, New York City. 1923-09-11. p. 3. Retrieved 2023-10-15 – via Newspapers.com.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

References edit

  • Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
    • Google interactive map
    • Besselian elements
  • Foto and sketchs of Solar Corona September 10, 1923