In mathematics, a standard Borel space is the Borel space associated with a Polish space. Except in the case of discrete Polish spaces, the standard Borel space is unique, up to isomorphism of measurable spaces.
A measurable space is said to be "standard Borel" if there exists a metric on that makes it a complete separable metric space in such a way that is then the Borel σ-algebra.[1] Standard Borel spaces have several useful properties that do not hold for general measurable spaces.
Theorem. Let be a Polish space, that is, a topological space such that there is a metric on that defines the topology of and that makes a complete separable metric space. Then as a Borel space is Borel isomorphic to one of (1) (2) or (3) a finite discrete space. (This result is reminiscent of Maharam's theorem.)
It follows that a standard Borel space is characterized up to isomorphism by its cardinality,[2] and that any uncountable standard Borel space has the cardinality of the continuum.
Borel isomorphisms on standard Borel spaces are analogous to homeomorphisms on topological spaces: both are bijective and closed under composition, and a homeomorphism and its inverse are both continuous, instead of both being only Borel measurable.