In mathematics, the tent map with parameter μ is the real-valued function fμ defined by
the name being due to the tent-like shape of the graph of fμ. For the values of the parameter μ within 0 and 2, fμ maps the unit interval [0, 1] into itself, thus defining a discrete-time dynamical system on it (equivalently, a recurrence relation). In particular, iterating a point x0 in [0, 1] gives rise to a sequence :
where μ is a positive real constant. Choosing for instance the parameter μ = 2, the effect of the function fμ may be viewed as the result of the operation of folding the unit interval in two, then stretching the resulting interval [0, 1/2] to get again the interval [0, 1]. Iterating the procedure, any point x0 of the interval assumes new subsequent positions as described above, generating a sequence xn in [0, 1].
The case of the tent map is a non-linear transformation of both the bit shift map and the r = 4 case of the logistic map.
The tent map with parameter μ = 2 and the logistic map with parameter r = 4 are topologically conjugate,[1] and thus the behaviours of the two maps are in this sense identical under iteration.
Depending on the value of μ, the tent map demonstrates a range of dynamical behaviour ranging from predictable to chaotic.
The asymmetric tent map is essentially a distorted, but still piecewise linear, version of the case of the tent map. It is defined by
for parameter . The case of the tent map is the present case of . A sequence { } will have the same autocorrelation function[3] as will data from the first-order autoregressive process with { } independently and identically distributed. Thus data from an asymmetric tent map cannot be distinguished, using the autocorrelation function, from data generated by a first-order autoregressive process.