Timeless (gene)

Summary

Timeless (tim) is a gene in multiple species but is most notable for its role in Drosophila for encoding TIM, an essential protein that regulates circadian rhythm. Timeless mRNA and protein oscillate rhythmically with time as part of a transcription-translation negative feedback loop involving the period (per) gene and its protein.

timeless
Identifiers
OrganismD. melanogaster
Symboltim
Entrez33571
RefSeq (mRNA)NM_164542
RefSeq (Prot)NP_722914
UniProtP49021
Other data
Chromosome2L: 3.49 - 3.51 Mb
Search for
StructuresSwiss-model
DomainsInterPro

Discovery edit

In 1994, timeless was discovered through forward genetic screening performed by Jeffery L. Price while working in the lab of Michael W. Young.[1] This gene was found when they noticed an arrhythmic tim01 mutant via a P element screen.[2][3] The tim01 mutation caused arrhythmic behavior, defined by the lack of ability to establish proper circadian rhythms.[1] In 1995, the timeless gene was cloned by Amita Sehgal and partners in the lab of Michael W. Young.[4] Unlike the Drosophila timeless gene, homologs have been discovered in other species that are non-essential for circadian rhythm.[5] The discovery of timeless followed the discovery of the period mutants in 1971 through forward genetic screening, the cloning of per in 1984, and an experiment determining that per is circadian in 1990. This occurred during a period of rapid expansion in the field of chronobiology in the 1990s.

Structure edit

Timeless, N-terminal
Identifiers
SymbolTIMELESS
PfamPF04821
InterProIPR006906
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB5MQI

The length of the coding region of the Drosophila timeless gene is 4029 base pairs, from which a 1398 amino acid protein is transcribed.[6] The gene starts at a consensus cap site upstream of a methionine codon. It contains 11 exons and 10 introns. In various Drosophila species, the timeless protein TIM contains more highly conserved functional domains and amino acid sequence than its counterpart, PER (protein encoded by per). CLD was the least conserved of these regions between D. virilis and D. melanogaster.[6] These conserved parts include: the PER interaction domain, the nuclear localization signal (NLS), cytoplasmic localization domain (CLD), N-terminal end (non-functional), and C-terminal end.[6] TIM is also known to have a basic region, which interacts with the PAS domain of the PER protein, and a central acidic region. There is also a region of unknown function near the N-terminus of the TIM protein that contains a 32 amino acid sequence that, when deleted, causes arrhythmic behavior in the fly. In various species of Drosophila, such as D. virilis and D. melanogaster, the initiating methionine for translation of the timeless gene into TIM is in different places, with the D. virilis start site downstream of the start site in D. melanogaster.[6]

Timeless homologs edit

timeout
Identifiers
OrganismDrosophila melanogaster
Symboltim-2
UniProtQ8INH7
Search for
StructuresSwiss-model
DomainsInterPro
Timeout, C-terminal (PAB)
 
Human TIMELESS PAB
Identifiers
SymbolTIMELESS_C
PfamPF05029
InterProIPR006906
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB4XHT

Drosophila homolog edit

The timeless gene is an essential component of the molecular circadian clock in Drosophila.[3] It acts as part of an autoregulatory feedback loop in conjunction with the period (per) gene product as noted in collaborative studies performed by the labs of Michael W. Young and Amita Sehgal.[7] Further studies by the labs of Young, Sehgal, Charles Weitz, and Michael Rosbash indicated that timeless protein (TIM) and period protein (PER) form a heterodimer that exhibits circadian rhythms in wild type Drosophila.[8][9] Researchers in Rosbash's lab also showed that tim mRNA levels and TIM protein levels have circadian rhythms that are similar to those of the period (per) mRNA and its product.[8][10][11] Experiments done jointly by the Weitz, Young, and Sehgal labs using yeast 2-hybrid proved that TIM directly binds with PER.[12] During the early evening, PER and TIM dimerize and accumulate. Late at night, the dimer travels into the nucleus to inhibit per and tim transcription. In 1996, the teams of Sehgal, Edery, and Young found that exposure to light leads to the degradation of TIM and subsequently PER.[1][11][13]

The PER/TIM heterodimer negatively regulates transcription of period (per) and timeless (tim) genes. Within this negative feedback loop, first the PER/TIM heterodimers form in the cytoplasm, accumulate, and then translocate to the nucleus.[14] The complex then blocks the positive transcription factors clock (CLK) and cycle (CYC), thereby repressing the transcription of per.

As part of the circadian clock, timeless is essential for entrainment to light-dark (LD) cycles. The typical period length of free-running Drosophila is 23.9 hours, requiring adaptations to the 24-hour environmental cycle.[15] Adaptation first begins with exposure to light. This process leads to the rapid degradation of the TIM protein, allowing organisms to entrain at dawn to environmental cycles.[16]

 
Circadian clock of drosophila

In light-dark cycles, TIM protein level decreases rapidly in late night/early morning, followed by the similar but more gradual changes in PER protein level. TIM degradation is independent of per and its protein, and releases PER from the PER/TIM complex.[8] In some cell types, the photoreceptor protein cryptochrome (CRY) physically associates with TIM and helps regulate light-dependent degradation. CRY is activated by blue light, which binds to TIM and tags it for degradation.[17] This ends the PER/TIM repression of the CLK/CYC-mediated transcription of per and tim genes, allowing per and tim mRNA to be produced to restart the cycle.[8]

This mechanism allows entrainment of flies to environmental light cues. When Drosophila receive light inputs in the early subjective night, light-induced TIM degradation causes a delay in TIM accumulation, which creates a phase delay.[17] When light inputs are received in the late subjective night, a light pulse causes TIM degradation to occur earlier than under normal conditions, leading to a phase advance.[17]

In Drosophila, the negative regulator PER, from the PER/TIM complex, is eventually degraded by a casein kinase-mediated phosphorylation cycle, allowing fluctuations in gene expression according to environmental cues. These proteins mediate the oscillating expression of the transcription factor VRILLE (VRI), which is required for behavioral rhythmicity, per and tim expression, and accumulation of PDF (pigment-dispersing factor).[16]

Gryllus bimaculatus (two-spotted cricket) homolog edit

Timeless does not appear to be essential for oscillation of the circadian clock for all insects. In wild type Gryllus bimaculatus, tim mRNA shows rhythmic expression in both LD and DD (dark-dark cycles) similar to that of per, peaking during the subjective night. When injected with tim double-stranded RNA (dstim), tim mRNA levels were significantly reduced and its circadian expression rhythm was eliminated. After the dstim treatment, however, adult crickets showed a clear locomotor rhythm in constant darkness, with a free-running period significantly shorter than that of control crickets injected with Discosoma sp. Red2 (DsRed2) dsRNA. These results suggest that in the cricket, tim plays some role in fine-tuning of the free-running period but may not be essential for oscillation of the circadian clock.[5]

Mammalian homolog edit

In 1998, researchers identified a mouse homolog and a human homolog of the Drosophila timeless gene.[18] The exact role of TIM in mammals is still unclear,. Recent work on the mammalian timeless (mTim) in mice has suggested that the gene may not play the same essential role in mammals as in Drosophila as a necessary function of the circadian clock.[19] While Tim is expressed in the Suprachiasmatic Nucleus (SCN) which is thought to be the primary oscillator in humans, its transcription does not oscillate rhythmically in constant conditions, and the TIM protein remains in the nucleus.[19][20]

 
Circadian clock of mammals

However, mTim is shown to be necessary for embryonic development in mice, indicating a different gene function than in Drosophila. This suggests a divergence between mammalian clocks and the Drosophila clock.[19] Moreover, mammalian tim is more orthologous to the Tim-2 (Timeout) paralog of the Drosophila Timeless gene than the actual gene itself.[21] Like tim-2, the mammalian orthologs has a C-terminal PARP1-binding (PAB) domain. The complex they from promotes homologous recombination DNA repair.[22]

The timeless protein is thought to directly connect the cell cycle with the circadian rhythm in mammals. In this model. referred to as a “direct coupling,”[23] the two cycles share a key protein whose expression exhibits a circadian pattern. The essential role of Tim in Drosophila in creating circadian rhythm is accomplished by Cry in mammals. In mammals, Cry and Per transcription is activated by the CLOCK/BMAL1 complex, and repressed by the PER/CRY complex.[24]

Humans edit

timeless homolog (Human)
Identifiers
SymbolTIMELESS
Alt. symbolshTIM
NCBI gene8914
HGNC11813
OMIM603887
RefSeqNM_003920
UniProtQ9UNS1
Other data
LocusChr. 12 q12-q13
Search for
StructuresSwiss-model
DomainsInterPro

The human timeless protein (hTIM) has been shown to be required for the production of electrical oscillations output by the suprachiasmatic nucleus (SCN), the major clock governing all tissue-specific circadian rhythms of the body.[25] This protein also interacts with the products of major clock genes CLOCK, BMAL, PER1, PER2 and PER3.

Sancar and colleagues investigated whether hTIM played a similar role to orthologs in C. elegans and types of yeast, which are known to play important roles in the cell cycle.[23] Their experiments suggested that hTIM plays an integral role in the G2/M and intra-S cell cycle checkpoints.[23] With respect to the G2/M checkpoint, hTIM binds to the ATRIP subunit on ATR – a protein kinase sensitive to DNA damage. This binding between hTIM and ATR then leads to the phosphorylation of Chk1, resulting in cell cycle arrest or apoptosis.[23] This process serves as an important control to stop the proliferation of cells with DNA damage prior to mitotic division. The role of hTIM in the intra-S checkpoint is less clear at the molecular level; however, down-regulation of hTIM leads to an increase in the rate of generation of replication forks – even in the presence of DNA damage and other regulatory responses.[23]

Current research edit

The Timeless gene has also been found to influence the development of disease in humans. Downregulation of the timeless gene in human carcinoma cells leads to shortened telomeres, indicating its role in telomere length maintenance. Telomere-associated DNA damage also increases in timeless depleted cells, along with the delay of telomere replication. Swi1 is a timeless-related protein that is required for DNA replication in the telomere region.[26] This association between timeless and telomeres is indicative of the gene's possible association with cancer.[27]

A single nucleotide polymorphism substitution that results in the transformation of glutamine to arginine in the amino acid sequence in the human timeless gene shows no association with either morningness or eveningness tendencies in humans.[28] This is consistent with other research, suggesting that htim is not important in the circadian rhythm of humans.

Timeless is now frequently found to be overexpressed in many different tumor types. In a study that used Timeless-targeting siRNA oligos, followed by a whole-genome expression microarray as well as network analysis. Further testing of Timeless down-regulation on cell proliferation rates of a cervical and breast cancer cell line. It was found that elevated expression of Timeless was significantly associated with more advanced tumor stage and poorer breast cancer prognosis.[29] Similarity in gene expression signatures has allowed for TIMELESS to be identified as Kinase Suppressor of Ras-1 (KSR1)-like and a potential target required for cancer cell survival. TIMELESS overexpression represents a vulnerability in Ras-driven tumors that offers potential insight into novel and selective targets found in Ras-driven cancers, which can be leveraged to develop selective and more effective therapeutics.[30]

See also edit

References edit

  1. ^ a b c Panda S, Hogenesch JB, Kay SA (May 2002). "Circadian rhythms from flies to human". Nature. 417 (6886): 329–35. Bibcode:2002Natur.417..329P. doi:10.1038/417329a. PMID 12015613. S2CID 4410192.
  2. ^ Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (August 1999). "The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene". Cell. 98 (3): 365–76. doi:10.1016/S0092-8674(00)81965-0. PMID 10458611. S2CID 902666.
  3. ^ a b Sehgal A, Price JL, Man B, Young MW (March 1994). "Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless". Science. 263 (5153): 1603–6. Bibcode:1994Sci...263.1603S. doi:10.1126/science.8128246. PMID 8128246.
  4. ^ Myers MP, Wager-Smith K, Wesley CS, Young MW, Sehgal A (November 1995). "Positional cloning and sequence analysis of the Drosophila clock gene, timeless". Science. 270 (5237): 805–8. Bibcode:1995Sci...270..805M. doi:10.1126/science.270.5237.805. PMID 7481771. S2CID 3211623.
  5. ^ a b Danbara Y, Sakamoto T, Uryu O, Tomioka K (Dec 2010). "RNA interference of timeless gene does not disrupt circadian locomotor rhythms in the cricket Gryllus bimaculatus". Journal of Insect Physiology. 56 (12): 1738–1745. doi:10.1016/j.jinsphys.2010.07.002. PMID 20637213.
  6. ^ a b c d Ousley A, Zafarullah K, Chen Y, Emerson M, Hickman L, Sehgal A (Feb 1998). "Conserved regions of the timeless (tim) clock gene in Drosophila analyzed through phylogenetic and functional studies". Genetics. 148 (2): 815–25. doi:10.1093/genetics/148.2.815. PMC 1459808. PMID 9504927.
  7. ^ Sehgal A, Rothenfluh-Hilfiker A, Hunter-Ensor M, Chen Y, Myers MP, Young MW (November 1995). "Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation". Science. 270 (5237): 808–10. Bibcode:1995Sci...270..808S. doi:10.1126/science.270.5237.808. PMID 7481772. S2CID 38151127.
  8. ^ a b c d Zeng H, Qian Z, Myers MP, Rosbash M (March 1996). "A light-entrainment mechanism for the Drosophila circadian clock". Nature. 380 (6570): 129–35. Bibcode:1996Natur.380..129Z. doi:10.1038/380129a0. PMID 8600384. S2CID 239957.
  9. ^ Gekakis N, Saez L, Delahaye-Brown AM, Myers MP, Sehgal A, Young MW, Weitz CJ (November 1995). "Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL". Science. 270 (5237): 811–5. Bibcode:1995Sci...270..811G. doi:10.1126/science.270.5237.811. JSTOR 2888932. PMID 7481773. S2CID 39193312.
  10. ^ Hunter-Ensor M, Ousley A, Sehgal A (March 1996). "Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light". Cell. 84 (5): 677–85. doi:10.1016/s0092-8674(00)81046-6. PMID 8625406. S2CID 15049039.
  11. ^ a b Myers MP, Wager-Smith K, Rothenfluh-Hilfiker A, Young MW (March 1996). "Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock". Science. 271 (5256): 1736–40. Bibcode:1996Sci...271.1736M. doi:10.1126/science.271.5256.1736. PMID 8596937. S2CID 6811496.
  12. ^ Brody TB. "Gene name - timeless". Interactive Fly, Drosophila. Society for Developmental Biology. Retrieved 9 April 2015.
  13. ^ Lee C, Parikh V, Itsukaichi T, Bae K, Edery I (March 1996). "Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex". Science. 271 (5256): 1740–4. Bibcode:1996Sci...271.1740L. doi:10.1126/science.271.5256.1740. PMID 8596938. S2CID 24416627.
  14. ^ Van Gelder RN (Nov 2006). "Timeless genes and jetlag". Proceedings of the National Academy of Sciences of the United States of America. 103 (47): 17583–17584. Bibcode:2006PNAS..10317583V. doi:10.1073/pnas.0608751103. PMC 1693787. PMID 17101961.
  15. ^ Petersen G, Hall JC, Rosbash M (Dec 1988). "The period gene of Drosophila carries species-specific behavioral instructions". The EMBO Journal. 7 (12): 3939–47. doi:10.1002/j.1460-2075.1988.tb03280.x. PMC 454986. PMID 3208755.
  16. ^ a b Rothenfluh A, Young MW, Saez L (May 2000). "A TIMELESS-independent function for PERIOD proteins in the Drosophila clock". Neuron. 26 (2): 505–14. doi:10.1016/S0896-6273(00)81182-4. PMID 10839368. S2CID 18339087.
  17. ^ a b c Allada R, Chung BY (March 2010). "Circadian organization of behavior and physiology in Drosophila". Annual Review of Physiology. 72: 605–24. doi:10.1146/annurev-physiol-021909-135815. PMC 2887282. PMID 20148690.
  18. ^ Koike N, Hida A, Numano R, Hirose M, Sakaki Y, Tei H (Dec 1998). "Identification of the mammalian homologues of the Drosophila timeless gene, Timeless1". FEBS Letters. 441 (3): 427–431. doi:10.1016/S0014-5793(98)01597-X. PMID 9891984. S2CID 32212533.
  19. ^ a b c Gotter AL, Manganaro T, Weaver DR, Kolakowski LF, Possidente B, Sriram S, MacLaughlin DT, Reppert SM (Aug 2000). "A time-less function for mouse timeless". Nature Neuroscience. 3 (8): 755–756. doi:10.1038/77653. PMID 10903565. S2CID 19234588.
  20. ^ Young MW, Kay SA (Sep 2001). "Time zones: a comparative genetics of circadian clocks". Nature Reviews Genetics. 2 (9): 702–715. doi:10.1038/35088576. PMID 11533719. S2CID 13286388.
  21. ^ Benna C, Scannapieco P, Piccin A, Sandrelli F, Zordan M, Rosato E, Kyriacou CP, Valle G, Costa R (Jul 2000). "A second timeless gene in Drosophila shares greater sequence similarity with mammalian tim". Current Biology. 10 (14): R512–R513. doi:10.1016/S0960-9822(00)00594-7. PMID 10899011. S2CID 36451473.
  22. ^ Xie S, Mortusewicz O, Ma HT, Herr P, Poon RY, Poon RR, Helleday T, Qian C (October 2015). "Timeless Interacts with PARP-1 to Promote Homologous Recombination Repair". Molecular Cell. 60 (1): 163–76. doi:10.1016/j.molcel.2015.07.031. PMID 26344098.
  23. ^ a b c d e Unsal-Kaçmaz K, Mullen TE, Kaufmann WK, Sancar A (April 2005). "Coupling of human circadian and cell cycles by the timeless protein". Molecular and Cellular Biology. 25 (8): 3109–16. doi:10.1128/MCB.25.8.3109-3116.2005. PMC 1069621. PMID 15798197.
  24. ^ Gustafson CL, Partch CL (January 2015). "Emerging models for the molecular basis of mammalian circadian timing". Biochemistry. 54 (2): 134–49. doi:10.1021/bi500731f. PMC 4303291. PMID 25303119.
  25. ^ Gillette MU, Tyan SH (2009-01-01). "Circadian Gene Expression in the Suprachiasmatic Nucleus". In Squire LR (ed.). Encyclopedia of Neuroscience. Oxford: Academic Press. pp. 901–908. doi:10.1016/B978-008045046-9.01596-5. ISBN 978-0-08-045046-9.
  26. ^ Gadaleta MC, González-Medina A, Noguchi E (November 2016). "Timeless protection of telomeres". Current Genetics. 62 (4): 725–730. doi:10.1007/s00294-016-0599-x. PMC 5056121. PMID 27068713.
  27. ^ Leman AR, Dheekollu J, Deng Z, Lee SW, Das MM, Lieberman PM, Noguchi E (June 2012). "Timeless preserves telomere length by promoting efficient DNA replication through human telomeres". Cell Cycle. 11 (12): 2337–47. doi:10.4161/cc.20810. PMC 3383593. PMID 22672906.
  28. ^ Pedrazzoli M, Ling L, Finn L, Kubin L, Young T, Katzenberg D, Mignot E (2000). "A polymorphism in the human timeless gene is not associated with diurnal preferences in normal adults". Sleep Research Online. 3 (2): 73–6. PMID 11382904.
  29. ^ Mao Y, Fu A, Leaderer D, Zheng T, Chen K, Zhu Y (October 2013). "Potential cancer-related role of circadian gene TIMELESS suggested by expression profiling and in vitro analyses". BMC Cancer. 13: 498. doi:10.1186/1471-2407-13-498. PMC 3924353. PMID 24161199.
  30. ^ Clymer BK, Fisher KW, Kelly DL, White MA, Lewis RE (2016-07-22). "Abstract 1252: TIMELESS is a KSR1-like effector of Ras-driven colon tumorigenesis". Cancer Research. 76 (14 Supplement): 1252. doi:10.1158/1538-7445.am2016-1252.

Further reading edit

  • Myers JS, Cortez D (Apr 2006). "Rapid activation of ATR by ionizing radiation requires ATM and Mre11". The Journal of Biological Chemistry. 281 (14): 9346–9350. doi:10.1074/jbc.M513265200. PMC 1821075. PMID 16431910.
  • Houtgraaf JH, Versmissen J, van der Giessen WJ (2006). "A concise review of DNA damage checkpoints and repair in mammalian cells". Cardiovascular Revascularization Medicine. 7 (3): 165–172. doi:10.1016/j.carrev.2006.02.002. PMID 16945824.
  • Stark GR, Taylor WR (Mar 2006). "Control of the G2/M transition". Molecular Biotechnology. 32 (3): 227–248. doi:10.1385/MB:32:3:227. PMID 16632889. S2CID 138087.
  • O'Connell MJ, Walworth NC, Carr AM (Jul 2000). "The G2-phase DNA-damage checkpoint". Trends in Cell Biology. 10 (7): 296–303. doi:10.1016/S0962-8924(00)01773-6. PMID 10856933.

External links edit

  • TIMELESS+protein,+human at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  • HHMI - The Drosophila Molecular Clock Model Archived 2013-02-17 at the Wayback Machine
  • Science Magazine Neurobiology