In operator theory, a Toeplitz operator is the compression of a multiplication operator on the circle to the Hardy space.
Let be the complex unit circle, with the standard Lebesgue measure, and be the Hilbert space of square-integrable functions. A bounded measurable function on defines a multiplication operator on . Let be the projection from onto the Hardy space . The Toeplitz operator with symbol is defined by
where " | " means restriction.
A bounded operator on is Toeplitz if and only if its matrix representation, in the basis , has constant diagonals.
For a proof, see Douglas (1972, p.185). He attributes the theorem to Mark Krein, Harold Widom, and Allen Devinatz. This can be thought of as an important special case of the Atiyah-Singer index theorem.
Here, denotes the closed subalgebra of of analytic functions (functions with vanishing negative Fourier coefficients), is the closed subalgebra of generated by and , and is the space (as an algebraic set) of continuous functions on the circle. See S.Axler, S-Y. Chang, D. Sarason (1978).
{{citation}}
: CS1 maint: multiple names: authors list (link)