In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.
A common problem in topology is to decide whether two topological spaces are homeomorphic or not. To prove that two spaces are not homeomorphic, it is sufficient to find a topological property which is not shared by them.
A property is:
Note that some of these terms are defined differently in older mathematical literature; see history of the separation axioms.
There are many examples of properties of metric spaces, etc, which are not topological properties. To show a property is not topological, it is sufficient to find two homeomorphic topological spaces such that has , but does not have .
For example, the metric space properties of boundedness and completeness are not topological properties. Let and be metric spaces with the standard metric. Then, via the homeomorphism . However, is complete but not bounded, while is bounded but not complete.
[2] Simon Moulieras, Maciej Lewenstein and Graciana Puentes, Entanglement engineering and topological protection by discrete-time quantum walks, Journal of Physics B: Atomic, Molecular and Optical Physics 46 (10), 104005 (2013). https://iopscience.iop.org/article/10.1088/0953-4075/46/10/104005/pdf