Transition metal alkyne complex


In organometallic chemistry, a transition metal alkyne complex is a coordination compound containing one or more alkyne ligands. Such compounds are intermediates in many catalytic reactions that convert alkynes to other organic products, e.g. hydrogenation and trimerization.[1]


Transition metal alkyne complexes are often formed by the displacement of labile ligands by the alkyne. For example, a variety of cobalt-alkyne complexes may be formed by reaction of the alkyne with dicobalt octacarbonyl.[2]

Co2(CO)8 + R2C2 → Co2(C2R2)(CO)6 + 2 CO

Many alkyne complexes are produced by reduction of metal halides:[3]

Cp2TiCl2 + Mg + Me3SiC≡CSiMe3 → Cp2Ti[(CSiMe3)2] + MgCl2

Structure and Bonding

Structures of various metal-alkyne complexes.

The coordination of alkynes to transition metals is similar to that of alkenes. The bonding is described by the Dewar–Chatt–Duncanson model. Upon complexation the C-C bond elongates and the alkynyl carbon bends away from 180º. For example, in the phenylpropyne complex Pt(PPh3)2(C2)Ph(Me), the C-C distance is 1.277(25) vs 1.20 Å for a typical alkyne. The C-C-C angle distorts 40° from linearity.[4] Because the bending induced by complexation, strained alkynes such as cycloheptyne and cyclooctyne are stabilized by complexation.[5]

In the IR spectra, the C-C vibration of alkynes, which occurs near 2300 cm−1, shifts upon complexation to around 1800 cm−1, indicating a weakening of the C-C bond.

η2-coordination to a single metal center

When bonded side-on to a single metal atom, an alkyne serves as a dihapto usually two-electron donor. For early metal complexes, e.g., Cp2Ti(C2R2), strong π-backbonding into one of the π* antibonding orbitals of the alkyne is indicated. This complex is described as a metallacyclopropene derivative of Ti(IV). For late transition metal complexes, e.g., Pt(PPh3)2(MeC2Ph), the π-backbonding is less prominent, and the complex is assigned oxidation state (0).[6][7]

In some complexes, the alkyne is classified as a four-electron donor. In these cases, both pairs of pi-electrons donate to the metal. This kind of bonding was first implicated in complexes of the type W(CO)(R2C2)3.[8]

η2, η2-coordination bridging two metal centers

Because alkynes have two π bonds, alkynes can form stable complexes in which they bridge two metal centers. The alkyne donates a total of four electrons, with two electrons donated to each of the metals. And example of a complex with this bonding scheme is η2-diphenylacetylene-(hexacarbonyl)dicobalt(0).[7]

Benzyne complexes

Transition metal benzyne complexes represent a special case of alkyne complexes since the free benzynes are not stable in the absence of the metal.[9]


Metal alkyne complexes are intermediates in the semihydrogenation of alkynes to alkenes:

C2R2 + H2cis-C2R2H2

This transformation is conducted on a large scale in refineries, which unintentionally produce acetylene during the production of ethylene. It is also useful in the preparation of fine chemicals. Semihydrogenation affords cis alkenes.[10]

Metal-alkyne complexes are also intermediates in the metal-catalyzed trimerization and tetramerizations. Cyclooctatetraene is produced from acetylene via the intermediacy of metal alkyne complexes. Variants of this reaction are exploited for some syntheses of substituted pyridines. Copper(I)-alkyne complexes are intermediates in alkyne coupling reactions, e.g., Glaser coupling:

The Pauson–Khand reaction provides a route to cyclopentenones via the intermediacy of cobalt-alkyne complexes.

PK reaction

Acrylic acid was once prepared by the hydrocarboxylation of acetylene:[11]

C2H2 + H2O + CO → H2C=CHCO2H

With the shift away from coal-based (acetylene) to petroleum-based feedstocks (olefins), catalytic reactions with alkynes are not widely practiced industrially.

Polyacetylene, although not of any practical value, has been produced using metal catalysis.

Ti-catalyzed polymerization of acetylene, inspired by Ziegler–Natta catalysis.


  1. ^ Elschenbroich, C. ”Organometallics” 2006 Wiley-VCH: Weinheim. ISBN 3-527-29390-6.
  2. ^ Kemmitt, R. D. W.; Russell, D. R.; "Cobalt" in Comprehensive Organometallic Chemistry I; Abel, E.W.; Stone, F.G.A.; Wilkinson, G. eds., 1982, Pergamon Press, Oxford. ISBN 0-08-025269-9
  3. ^ Rosenthal, Uwe; Burlakov, Vladimir V.; Arndt, Perdita; Baumann, Wolfgang; Spannenberg, Anke (2003). "The Titanocene Complex of Bis(trimethylsilyl)acetylene: Synthesis, Structure, and Chemistry†". Organometallics. 22 (5): 884–900. doi:10.1021/om0208570.
  4. ^ William Davies, B.; C. Payne, N., "Studies on metal-acetylene complexes: V. Crystal and molecular structure of bis(triphenylphosphine)(1-phenylpropyne)platinum(0), [P(C6H5)3]2(C6H5CCCH3)Pt0" J. Organomet. Chem. 1975, volume 99, pp. 315. doi:10.1016/S0022-328X(00)88462-4
  5. ^ Bennett, Martin A.; Schwemlein, Heinz P. (1989). "Metal Complexes of Small Cycloalkynes and Arynes". Angew. Chem. Int. Ed. Engl. 28 (10): 1296–1320. doi:10.1002/anie.198912961.
  6. ^ Hill, A.F. Organotransition Metal Chemistry, 2002, Royal Society of Chemistry, ISBN 0-471-28163-8.
  7. ^ a b Crabtree, R. H. Comprehensive Organometallic Chemistry V, 2009, John Wiley & Sons ISBN 978-0-470-25762-3[verification needed]
  8. ^ Joseph L. Templeton "Four-Electron Alkyne Ligands in Molybdenum(II) and Tungsten(II) Complexes" Advances in Organometallic Chemistry 1989, Volume 29, Pages 1–100.doi:10.1016/S0065-3055(08)60352-4
  9. ^ William M. Jones, Jerzy Klosin "Transition-Metal Complexes of Arynes, Strained Cyclic Alkynes, and Strained Cyclic Cumulenes" Advances in Organometallic Chemistry 1998, Volume 42, Pages 147–221. doi:10.1016/S0065-3055(08)60543-2
  10. ^ Michaelides, I. N.; Dixon, D. J. (2013). "Catalytic Stereoselective Semihydrogenation of Alkynes to E-Alkenes". Angew. Chem. Int. Ed. 52 (3): 806–808. doi:10.1002/anie.201208120. PMID 23255528.
  11. ^ W. Bertleff; M. Roeper; X. Sava. "Carbonylation". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a05_217.