Truncated tetraapeirogonal tiling

Summary

Truncated tetraapeirogonal tiling
Truncated tetraapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.8.∞
Schläfli symbol tr{∞,4} or
Wythoff symbol 2 ∞ 4 |
Coxeter diagram or
Symmetry group [∞,4], (*∞42)
Dual Order 4-infinite kisrhombille
Properties Vertex-transitive

In geometry, the truncated tetraapeirogonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one apeirogon on each vertex. It has Schläfli symbol of tr{∞,4}.

Related polyhedra and tilings edit

Paracompact uniform tilings in [∞,4] family
                                         
             
{∞,4} t{∞,4} r{∞,4} 2t{∞,4}=t{4,∞} 2r{∞,4}={4,∞} rr{∞,4} tr{∞,4} Dual figures                                                        
V∞4 V4.∞.∞ V(4.∞)2 V8.8.∞ V4 V43.∞ V4.8.∞
Alternations
[1+,∞,4]
(*44∞)
[∞+,4]
(∞*2)
[∞,1+,4]
(*2∞2∞)
[∞,4+]
(4*∞)
[∞,4,1+]
(*∞∞2)
[(∞,4,2+)]
(2*2∞)
[∞,4]+
(∞42)
     
=    
                       
=    
           
h{∞,4} s{∞,4} hr{∞,4} s{4,∞} h{4,∞} hrr{∞,4} s{∞,4}
       
Alternation duals
                                         
   
V(∞.4)4 V3.(3.∞)2 V(4.∞.4)2 V3.∞.(3.4)2 V∞ V∞.44 V3.3.4.3.∞
*n42 symmetry mutation of omnitruncated tilings: 4.8.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Omnitruncated
figure
 
4.8.4
 
4.8.6
 
4.8.8
 
4.8.10
 
4.8.12
 
4.8.14
 
4.8.16
 
4.8.∞ Omnitruncatedduals  
V4.8.4
 
V4.8.6
 
V4.8.8
 
V4.8.10
 
V4.8.12
 
V4.8.14
 
V4.8.16
 
V4.8.∞
*nn2 symmetry mutations of omnitruncated tilings: 4.2n.2n
Symmetry
*nn2
[n,n]
Spherical Euclidean Compact hyperbolic Paracomp.
*222
[2,2]
*332
[3,3]
*442
[4,4]
*552
[5,5]
*662
[6,6]
*772
[7,7]
*882
[8,8]...
*∞∞2
[∞,∞]
Figure                
Config. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4.∞.∞ Dual                
Config. V4.4.4 V4.6.6 V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4.∞.∞

Symmetry edit

The dual of this tiling represents the fundamental domains of [∞,4], (*∞42) symmetry. There are 15 small index subgroups constructed from [∞,4] by mirror removal and alternation. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The subgroup index-8 group, [1+,∞,1+,4,1+] (∞2∞2) is the commutator subgroup of [∞,4].

A larger subgroup is constructed as [∞,4*], index 8, as [∞,4+], (4*∞) with gyration points removed, becomes (*∞∞∞∞) or (*∞4), and another [∞*,4], index ∞ as [∞+,4], (∞*2) with gyration points removed as (*2). And their direct subgroups [∞,4*]+, [∞*,4]+, subgroup indices 16 and ∞ respectively, can be given in orbifold notation as (∞∞∞∞) and (2).

See also edit

References edit

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links edit