Twistor space

Summary

In mathematics and theoretical physics (especially twistor theory), twistor space is the complex vector space of solutions of the twistor equation . It was described in the 1960s by Roger Penrose and Malcolm MacCallum.[1] According to Andrew Hodges, twistor space is useful for conceptualizing the way photons travel through space, using four complex numbers. He also posits that twistor space may aid in understanding the asymmetry of the weak nuclear force.[2]

Informal motivation edit

In the (translated) words of Jacques Hadamard: "the shortest path between two truths in the real domain passes through the complex domain." Therefore when studying four-dimensional space   it might be valuable to identify it with   However, since there is no canonical way of doing so, instead all isomorphisms respecting orientation and metric between the two are considered. It turns out that complex projective 3-space   parametrizes such isomorphisms together with complex coordinates. Thus one complex coordinate describes the identification and the other two describe a point in  . It turns out that vector bundles with self-dual connections on  (instantons) correspond bijectively to holomorphic vector bundles on complex projective 3-space  .

Formal definition edit

For Minkowski space, denoted  , the solutions to the twistor equation are of the form

 

where   and   are two constant Weyl spinors and   is a point in Minkowski space. The   are the Pauli matrices, with   the indexes on the matrices. This twistor space is a four-dimensional complex vector space, whose points are denoted by  , and with a hermitian form

 

which is invariant under the group SU(2,2) which is a quadruple cover of the conformal group C(1,3) of compactified Minkowski spacetime.

Points in Minkowski space are related to subspaces of twistor space through the incidence relation

 

This incidence relation is preserved under an overall re-scaling of the twistor, so usually one works in projective twistor space, denoted  , which is isomorphic as a complex manifold to  .

Given a point   it is related to a line in projective twistor space where we can see the incidence relation as giving the linear embedding of a   parametrized by  .

The geometric relation between projective twistor space and complexified compactified Minkowski space is the same as the relation between lines and two-planes in twistor space; more precisely, twistor space is

 

It has associated to it the double fibration of flag manifolds   where   is the projective twistor space

 

and   is the compactified complexified Minkowski space

 

and the correspondence space between   and   is

 

In the above,   stands for projective space,   a Grassmannian, and   a flag manifold. The double fibration gives rise to two correspondences (see also Penrose transform),   and  

The compactified complexified Minkowski space   is embedded in   by the Plücker embedding; the image is the Klein quadric.

References edit

  1. ^ Penrose, R.; MacCallum, M.A.H. (February 1973). "Twistor theory: An approach to the quantisation of fields and space-time". Physics Reports. 6 (4): 241–315. doi:10.1016/0370-1573(73)90008-2.
  2. ^ Hodges, Andrew (2010). One to Nine: The Inner Life of Numbers. Doubleday Canada. p. 142. ISBN 978-0-385-67266-5.
  • Ward, R.S.; Wells, R.O. (1991). Twistor Geometry and Field Theory. Cambridge University Press. ISBN 0-521-42268-X.
  • Huggett, S.A.; Tod, K.P. (1994). An introduction to twistor theory. Cambridge University Press. ISBN 978-0-521-45689-0.