A Van der Waals molecule is a weakly bound complex of atoms or molecules held together by intermolecular attractions such as Van der Waals forces or by hydrogen bonds.[1] The name originated in the beginning of the 1970s when stable molecular clusters were regularly observed in molecular beam microwave spectroscopy.
Examples of well-studied vdW molecules are Ar2, H2-Ar, H2O-Ar, benzene-Ar, (H2O)2, and (HF)2. Others include the largest diatomic molecule He2, and LiHe.[2][3]
A notable example is the He-HCN complex, studied for its large amplitude motions and the applicability of the adiabatic approximation in separating its angular and radial motions. Research has shown that even in such 'floppy' systems, the adiabatic approximation can be effectively utilized to simplify quantum mechanical analyses.
In (supersonic) molecular beams temperatures are very low (usually less than 5 K). At these low temperatures Van der Waals (vdW) molecules are stable and can be investigated by microwave, far-infrared spectroscopy and other modes of spectroscopy.[4] Also in cold equilibrium gases vdW molecules are formed, albeit in small, temperature dependent concentrations. Rotational and vibrational transitions in vdW molecules have been observed in gases, mainly by UV and IR spectroscopy.
Van der Waals molecules are usually very non-rigid and different versions are separated by low energy barriers, so that tunneling splittings, observable in far-infrared spectra, are relatively large.[5] Thus, in the far-infrared one may observe intermolecular vibrations, rotations, and tunneling motions of Van der Waals molecules. The VRT spectroscopic study of Van der Waals molecules is one of the most direct routes to the understanding of intermolecular forces.[6]
In study of helium-containing van der Waals complexes, the adiabatic or Born-Oppenheimer approximation has been adapted to separate angular and radial motions. Despite the challenges posed by the weak interactions leading to large amplitude motions, research demonstrates that this approximation can still be valid, offering a quicker computational method for Diffusion Monte Carlo studies of molecular rotation within ultra-cold helium droplets. The non-rigid nature of these complexes, especially those with helium, complicates traditional quantum mechanical approaches. However, recent studies have validated the use of the adiabatic approximation for separating different types of molecular motion, even in these 'floppy' systems.