Wadge hierarchy

Summary

In descriptive set theory, within mathematics, Wadge degrees are levels of complexity for sets of reals. Sets are compared by continuous reductions. The Wadge hierarchy is the structure of Wadge degrees. These concepts are named after William W. Wadge.

Wadge degrees edit

Suppose   and   are subsets of Baire space ωω. Then   is Wadge reducible to   or  W   if there is a continuous function   on ωω with  . The Wadge order is the preorder or quasiorder on the subsets of Baire space. Equivalence classes of sets under this preorder are called Wadge degrees, the degree of a set   is denoted by [ ]W. The set of Wadge degrees ordered by the Wadge order is called the Wadge hierarchy.

Properties of Wadge degrees include their consistency with measures of complexity stated in terms of definability. For example, if  W   and   is a countable intersection of open sets, then so is  . The same works for all levels of the Borel hierarchy and the difference hierarchy. The Wadge hierarchy plays an important role in models of the axiom of determinacy. Further interest in Wadge degrees comes from computer science, where some papers have suggested Wadge degrees are relevant to algorithmic complexity.

Wadge's lemma states that under the axiom of determinacy (AD), for any two subsets   of Baire space,  W   or  W ωω\ .[1] The assertion that the Wadge lemma holds for sets in Γ is the semilinear ordering principle for Γ or SLO(Γ). Any semilinear order defines a linear order on the equivalence classes modulo complements. Wadge's lemma can be applied locally to any pointclass Γ, for example the Borel sets, Δ1n sets, Σ1n sets, or Π1n sets. It follows from determinacy of differences of sets in Γ. Since Borel determinacy is proved in ZFC, ZFC implies Wadge's lemma for Borel sets.

Wadge's lemma is similar to the cone lemma from computability theory.

Wadge's lemma via Wadge and Lipschitz games edit

The Wadge game is a simple infinite game discovered by William Wadge (pronounced "wage"). It is used to investigate the notion of continuous reduction for subsets of Baire space. Wadge had analyzed the structure of the Wadge hierarchy for Baire space with games by 1972, but published these results only much later in his PhD thesis. In the Wadge game  , player I and player II each in turn play integers, and the outcome of the game is determined by checking whether the sequences x and y generated by players I and II are contained in the sets A and B, respectively. Player II wins if the outcome is the same for both players, i.e.   is in   if and only if   is in  . Player I wins if the outcome is different. Sometimes this is also called the Lipschitz game, and the variant where player II has the option to pass finitely many times is called the Wadge game.

Suppose that the game is determined. If player I has a winning strategy, then this defines a continuous (even Lipschitz) map reducing   to the complement of  , and if on the other hand player II has a winning strategy then you have a reduction of   to  . For example, suppose that player II has a winning strategy. Map every sequence x to the sequence y that player II plays in   if player I plays the sequence x, and player II follows his or her winning strategy. This defines a continuous map f with the property that x is in   if and only if f(x) is in  .

Structure of the Wadge hierarchy edit

Martin and Monk proved in 1973 that AD implies the Wadge order for Baire space is well founded. Hence under AD, the Wadge classes modulo complements form a wellorder. The Wadge rank of a set   is the order type of the set of Wadge degrees modulo complements strictly below [ ]W. The length of the Wadge hierarchy has been shown to be Θ. Wadge also proved that the length of the Wadge hierarchy restricted to the Borel sets is φω1(1) (or φω1(2) depending on the notation), where φγ is the γth Veblen function to the base ω1 (instead of the usual ω).

As for the Wadge lemma, this holds for any pointclass Γ, assuming the axiom of determinacy. If we associate with each set   the collection of all sets strictly below   on the Wadge hierarchy, this forms a pointclass. Equivalently, for each ordinal α ≤ θ the collection Wα of sets that show up before stage α is a pointclass. Conversely, every pointclass is equal to some  α. A pointclass is said to be self-dual if it is closed under complementation. It can be shown that Wα is self-dual if and only if α is either 0, an even successor ordinal, or a limit ordinal of countable cofinality.

Other notions of degree edit

Similar notions of reduction and degree arise by replacing the continuous functions by any class of functions F that contains the identity function and is closed under composition. Write  F   if   for some function   in F. Any such class of functions again determines a preorder on the subsets of Baire space. Degrees given by Lipschitz functions are called Lipschitz degrees, and degrees from Borel functions Borel–Wadge degrees.

See also edit

References edit

  1. ^ D. Martin, H. G. Dales, Truth in Mathematics, ch. "Mathematical Evidence", p.224. Oxford Science Publications, 1998.
  • Alexander S. Kechris; Benedikt Löwe; John R. Steel, eds. (December 2011). Wadge Degrees and Projective Ordinals: The Cabal Seminar Volume II. Lecture Notes in Logic. Cambridge University Press. ISBN 9781139504249.
  • Andretta, Alessandro (2007). "The SLO principle and the Wadge hierarchy". In Bold, Stefan; Benedikt Löwe; Räsch, Thoralf; et al. (eds.). Infinite Games, Papers of the conference "Foundations of the Formal Sciences V" held in Bonn, Nov 26-29, 2004. Studies in Logic. Vol. 11. College Publications. pp. 1–38. ISBN 9781904987758..
  • Kanamori, Akihiro (2000). The Higher Infinite (second ed.). Springer. ISBN 3-540-00384-3.
  • Kechris, Alexander S. (1995). Classical Descriptive Set Theory. Springer. ISBN 0-387-94374-9.
  • Wadge, William W. (1983). "Reducibility and determinateness on the Baire space" (PDF). PhD thesis. Univ. of California, Berkeley. {{cite journal}}: Cite journal requires |journal= (help)

Further reading edit

  • Andretta, Alessandro & Martin, Donald (2003). "Borel-Wadge degrees". Fundamenta Mathematicae. 177 (2): 175–192. doi:10.4064/fm177-2-5.
  • Cenzer, Douglas (1984). "Monotone Reducibility and the Family of Infinite Sets". The Journal of Symbolic Logic. 49 (3). Association for Symbolic Logic: 774–782. doi:10.2307/2274130. JSTOR 2274130. S2CID 37813340.
  • Duparc, Jacques (2001). "Wadge hierarchy and Veblen hierarchy. Part I: Borel sets of finite rank". Journal of Symbolic Logic. 66 (1): 55–86. doi:10.2307/2694911. JSTOR 2694911. S2CID 17703130.
  • Selivanov, Victor L. (2006). "Towards a descriptive set theory for domain-like structures". Theoretical Computer Science. 365 (3): 258–282. doi:10.1016/j.tcs.2006.07.053. ISSN 0304-3975.
  • Selivanov, Victor L. (2008). "Wadge Reducibility and Infinite Computations". Mathematics in Computer Science. 2 (1): 5–36. doi:10.1007/s11786-008-0042-x. ISSN 1661-8270. S2CID 38211417.
  • Don Briano (2006). "The Louveau Game for the Borel Functions". preprint. Univ. of Amsterdam, ILLC Prepublications PP-2006-24. Retrieved 2007-08-12. {{cite journal}}: Cite journal requires |journal= (help)