Yttrium(III) nitrate


Yttrium(III) nitrate is an inorganic compound with the formula Y(NO3)3. The hexahydrate is the most common form commercially available.

Yttrium(III) nitrate
Yttrium nitrate.jpg
Other names
Yttrium nitrate
  • anhydrous: 10361-93-0 checkY
  • hexahydrate: 13494-98-9 checkY
3D model (JSmol)
  • anhydrous: Interactive image
ECHA InfoCard 100.030.717 Edit this at Wikidata
EC Number
  • anhydrous: 233-802-6
  • anhydrous: 159283
  • hexahydrate: 166833
  • anhydrous: 0XR81865O4
  • anhydrous: DTXSID70890657 Edit this at Wikidata
  • InChI=1S/3NO3.Y/c3*2-1(3)4;/q3*-1;+3
  • anhydrous: [N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[N+](=O)([O-])[O-].[Y+3]
Molar mass 274.927
Appearance Colorless crystals
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references


Yttrium(III) nitrate can be prepared by dissolving corresponding metal oxide in 6 mol/L nitric acid:[1]

Y2O3 + 6 HNO3 → 2 Y(NO3)3 + 3 H2O


Yttrium(III) nitrate hexahydrate loses crystallized water at relatively low temperature. Upon further heating, basic salt YONO3 is formed.[2] At 600 C, the thermal decomposition is complete. Y2O3 is the final product.[3]

Y(NO3)3·3TBP is formed when tributyl phosphate is used as the extracting solvent.[4]


Yttrium(III) nitrate is mainly used as a source of Y3+ cations. It is a precursor of some yttrium-containing materials, such as Y4Al2O9,[3] YBa2Cu3O6.5+x[2] and yttrium-based metal-organic frameworks. [5] It can also be used as a catalyst in organic synthesis.[6]


  1. ^ Dong, Bin; Hua, Rui N.; Cao, Bao S.; Li, Zhi P.; He, Yang Y.; Zhang, Zhen Y.; Wolfbeis, Otto S. (2014). "Size dependence of the upconverted luminescence of NaYF4:Er,Yb microspheres for use in ratiometric thermometry". Physical Chemistry Chemical Physics. 16 (37): 20009–12. Bibcode:2014PCCP...1620009D. doi:10.1039/C4CP01966K. ISSN 1463-9076. PMID 25123272.
  2. ^ a b Zhuang, R.F.; Qiu, J.B.; Zhu, Y.P. (1990). "A study on reaction mechanism in preparation of Y-Ba-Cu-O superconducting material from the thermoreaction method of nitrates". Journal of Solid State Chemistry. 86 (1): 125–128. doi:10.1016/0022-4596(90)90122-E. ISSN 0022-4596.
  3. ^ a b Xu, F.M.; Zhang, Z.J.; Shi, X.L.; Tan, Y.; Yang, J.M. (2011). "Effects of adding yttrium nitrate on the mechanical properties of hot-pressed AlN ceramics". Journal of Alloys and Compounds. 509 (35): 8688–8691. doi:10.1016/j.jallcom.2011.05.110. ISSN 0925-8388.
  4. ^ Scargill, D.; Alcock, K.; Fletcher, J.M.; Hesford, E.; McKay, H.A.C. (1957). "Tri-n-butyl phosphate as an extracting solvent for inorganic nitrates—II Yttrium and the lower lanthanide nitrates". Journal of Inorganic and Nuclear Chemistry. 4 (5–6): 304–314. doi:10.1016/0022-1902(57)80012-8. ISSN 0022-1902.
  5. ^ Duan, Tian-Wei; Yan, Bing (2014). "Hybrids based on lanthanide ions activated yttrium metal–organic frameworks: functional assembly, polymer film preparation and luminescence tuning". J. Mater. Chem. C. 2 (26): 5098–5104. doi:10.1039/C4TC00414K. ISSN 2050-7526.
  6. ^ Bhanushali, Mayur J.; Nandurkar, Nitin S.; Jagtap, Sachin R.; Bhanage, Bhalchandra M. (2008). "Y(NO3)3·6H2O catalyzed aza-Michael addition of aromatic/hetero-aromatic amines under solvent-free conditions". Catalysis Communications. 9 (6): 1189–1195. doi:10.1016/j.catcom.2007.11.002. ISSN 1566-7367.