Yuri Ivanovich Manin (Russian: Ю́рий Ива́нович Ма́нин; born 16 February 1937) is a Russian mathematician, known for work in algebraic geometry and diophantine geometry, and many expository works ranging from mathematical logic to theoretical physics. Moreover, Manin was one of the first to propose the idea of a quantum computer in 1980 with his book Computable and Uncomputable.[1]
Yuri Manin | |
---|---|
![]() | |
Born | Yuri Ivanovich Manin 16 February 1937 |
Nationality | Russian |
Alma mater | Moscow State University Steklov Mathematics Institute (PhD) |
Known for | algebraic geometry, diophantine geometry |
Awards | Nemmers Prize in Mathematics (1994) Schock Prize (1999) Cantor Medal (2002) Bolyai Prize (2010) King Faisal International Prize (2002) |
Scientific career | |
Fields | Mathematician |
Institutions | Max-Planck-Institut für Mathematik Northwestern University |
Doctoral advisor | Igor Shafarevich |
Doctoral students | Alexander Beilinson, Vladimir Berkovich, Mariusz Wodzicki, Vladimir Drinfeld, Vasilli Iskovskikh, Mikhail Kapranov, Victor Kolyvagin, Alexander L. Rosenberg, Vyacheslav Shokurov, Alexei Skorobogatov, Yuri Tschinkel |
Manin gained a doctorate in 1960 at the Steklov Mathematics Institute as a student of Igor Shafarevich. He is now a Professor at the Max-Planck-Institut für Mathematik in Bonn, and a professor emeritus at Northwestern University.[2][3]
Manin's early work included papers on the arithmetic and formal groups of abelian varieties, the Mordell conjecture in the function field case, and algebraic differential equations. The Gauss–Manin connection is a basic ingredient of the study of cohomology in families of algebraic varieties. He wrote a book on cubic surfaces and cubic forms, showing how to apply both classical and contemporary methods of algebraic geometry, as well as nonassociative algebra. He also indicated the role of the Brauer group, via Grothendieck's theory of global Azumaya algebras, in accounting for obstructions to the Hasse principle, setting off a generation of further work. He pioneered the field of arithmetic topology (along with John Tate, David Mumford, Michael Artin and Barry Mazur). He also formulated the Manin conjecture, which predicts the asymptotic behaviour of the number of rational points of bounded height on algebraic varieties. He has further written on Yang–Mills theory, quantum information, and mirror symmetry.
Manin had over 40 doctoral students, including Vladimir Berkovich, Mariusz Wodzicki, Alexander Beilinson, Ivan Cherednik, Alexei Skorobogatov, Vladimir Drinfeld, Mikhail Kapranov, Vyacheslav Shokurov, Arend Bayer and Victor Kolyvagin, as well as foreign students including Hà Huy Khoái.
He was awarded the Brouwer Medal in 1987, the first Nemmers Prize in Mathematics in 1994, the Schock Prize of the Royal Swedish Academy of Sciences in 1999, the Cantor Medal of the German Mathematical Society in 2002, the King Faisal International Prize in 2002 and the Bolyai Prize of the Hungarian Academy of Sciences in 2010.
In 1990 he became a foreign member of the Royal Netherlands Academy of Arts and Sciences.[4]
Wikiquote has quotations related to Yuri Manin. |