Carbonylation refers to reactions that introduce carbon monoxide into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

Organic chemistryEdit

Several industrially useful organic chemicals are prepared by carbonylations, which can be highly selective reactions. Carbonylations produce organic carbonyls, i.e., compounds that contain the C=O functional group such as aldehydes, carboxylic acids, and esters.[1][2] Carbonylations are the basis of many types of reactions, including hydroformylation and Reppe Chemistry. These reactions require metal catalysts, which bind and activate the CO.[3] These processes involve transition metal acyl complexes as intermediates. Much of this theme was developed by Walter Reppe.


Hydroformylation entails the addition of both carbon monoxide and hydrogen to unsaturated organic compounds, usually alkenes. The usual products are aldehydes:


The reaction requires metal catalysts that bind CO, forming intermediate metal carbonyls. Many of the commodity carboxylic acids, i.e. propionic, butyric, valeric, etc, as well as many of the commodity alcohols, i.e. propanol, butanol, amyl alcohol, are derived from aldehydes produced by hydroformylation. In this way, hydroformylation is a gateway from alkenes to oxygenates.


Many organic carbonyls undergo decarbonylation. A common transformation involves the conversion of aldehydes to alkanes, usually catalyzed by metal complexes:[4]


Few catalysts are highly active or exhibit broad scope.[5]

Acetic acid and acetic anhydrideEdit

Large-scale applications of carbonylation are the Monsanto and Cativa processes, which convert methanol to acetic acid. In another major industrial process, Acetic anhydride is prepared by a related carbonylation of methyl acetate.[6]

Oxidative carbonylationEdit

Dimethyl carbonate and dimethyl oxalate are produced industrially using carbon monoxide and an oxidant, in effect as a source of CO2+.[1]

2 CH3OH + 1/2 O2 + CO → (CH3O)2CO + H2O

The oxidative carbonylation of methanol is catalyzed by copper(I) salts, which form transient carbonyl complexes. For the oxidative carbonylation of alkenes, palladium complexes are used.

Hydrocarboxylation and hydroesterificationEdit

In hydrocarboxylation, alkenes and alkynes are the substrates. This method is used industrially to produce propionic acid from ethylene using nickel carbonyl as the catalyst:[1]


In the industrial synthesis of ibuprofen, a benzylic alcohol is converted to the corresponding arylacetic acid via a Pd-catalyzed carbonylation:[1]


Acrylic acid was once mainly prepared by the hydrocarboxylation of acetylene.[7]

Synthesis of acrylic acid using "Reppe chemistry". A metal catalyst is required.

Nowadays, however, the preferred route to acrylic acid entails the oxidation of propene, exploiting its low cost and the high reactivity of the allylic C-H bonds.

Hydroesterification is like hydrocarboxylation, but it uses alcohols in place of water.[8][9][10][11][12] This reaction is employed for the production of methyl propionate from ethylene:[12][10]

C2H4 + CO + MeOH → CH3CH2CO2Me

The process is catalyzed by Herrmann's catalyst, Pd[C6H4(CH2PBu-t)2]2. Under similar conditions, other Pd-diphosphines catalyze formation of polyethyleneketone.

Other reactionsEdit

The Koch reaction is a special case of hydrocarboxylation reaction that does not rely on metal catalysts. Instead, the process is catalyzed by strong acids such as sulfuric acid or the combination of phosphoric acid and boron trifluoride. The reaction is less applicable to simple alkene. The industrial synthesis of glycolic acid is achieved in this way:[13]


The conversion of isobutene to pivalic acid is also illustrative:

Me2C=CH2 + H2O + CO → Me3CCO2H

Alkyl, benzyl, vinyl, aryl, and allyl halides can also be carbonylated in the presence carbon monoxide and suitable catalysts such as manganese, iron, or nickel powders.[14]

Carbonylation in inorganic chemistryEdit

Metal carbonyls, compounds with the formula M(CO)xLy (M = metal; L = other ligands) are prepared by carbonylation of transition metals. Iron and nickel powder react directly with CO to give Fe(CO)5 and Ni(CO)4, respectively. Most other metals form carbonyls less directly, such as from their oxides or halides. Metal carbonyls are widely employed as catalysts in the hydroformylation and Reppe processes discussed above.[15] Inorganic compounds that contain CO ligands can also undergo decarbonylation, often via a photochemical reaction.


  1. ^ a b c d W. Bertleff; M. Roeper; X. Sava. "Carbonylation". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a05_217.
  2. ^ Arpe, .J.: Industrielle organische Chemie: Bedeutende vor- und Zwischenprodukte, 2007, Wiley-VCH-Verlag, ISBN 3-527-31540-3
  3. ^ Beller, Matthias; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. (1995). "Progress in hydroformylation and carbonylation". Journal of Molecular Catalysis A: Chemical. 104: 17–85. doi:10.1016/1381-1169(95)00130-1.
  4. ^ Hartwig, J. F. Organotransition Metal Chemistry, from Bonding to Catalysis; University Science Books: New York, 2010.
  5. ^ Kreis, M.; Palmelund, A.; Bunch, L.; Madsen, R., "A General and Convenient Method for the Rhodium-Catalyzed Decarbonylation of Aldehydes", Advanced Synthesis & Catalysis 2006, 348, 2148-2154. doi:10.1002/adsc.200600228
  6. ^ Zoeller, J. R.; Agreda, V. H.; Cook, S. L.; Lafferty, N. L.; Polichnowski, S. W.; Pond, D. M. (1992). "Eastman Chemical Company Acetic Anhydride Process". Catalysis Today. 13: 73–91. doi:10.1016/0920-5861(92)80188-S.
  7. ^ Takashi Ohara, Takahisa Sato, Noboru Shimizu, Günter Prescher Helmut Schwind, Otto Weiberg, Klaus Marten, Helmut Greim (2003). "Acrylic Acid and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_161.pub2.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)
  8. ^ El Ali, B.; Alper, H. "Hydrocarboxylation and hydroesterification reactions catalyzed by transition metal complexes" In Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH:Weinheim, 2004. ISBN 978-3-527-30613-8
  9. ^ Ahmad, Shahbaz; Lockett, Ashley; Shuttleworth, Timothy A.; Miles-Hobbs, Alexandra M.; Pringle, Paul G.; Bühl, Michael (2019-04-17). "Palladium-catalysed alkyne alkoxycarbonylation with P,N-chelating ligands revisited: a density functional theory study". Physical Chemistry Chemical Physics. 21 (16): 8543–8552. Bibcode:2019PCCP...21.8543A. doi:10.1039/C9CP01471C. hdl:10023/19712. ISSN 1463-9084. PMID 30957820. S2CID 102347387.
  10. ^ a b Ahmad, Shahbaz; Bühl, Michael (2021-08-04). "Computational modelling of Pd-catalysed alkoxycarbonylation of alkenes and alkynes". Physical Chemistry Chemical Physics. 23 (30): 15869–15880. Bibcode:2021PCCP...2315869A. doi:10.1039/D1CP02426D. ISSN 1463-9084. PMID 34318843. S2CID 236472958.
  11. ^ Ahmad, Shahbaz; Bühl, Michael (2019). "Design of a Highly Active Pd Catalyst with P,N Hemilabile Ligands for Alkoxycarbonylation of Alkynes and Allenes: A Density Functional Theory Study". Chemistry – A European Journal. 25 (50): 11625–11629. doi:10.1002/chem.201902402. hdl:10023/20461. ISSN 1521-3765. PMID 31322770. S2CID 197665216.
  12. ^ a b Ahmad, Shahbaz; Crawford, L. Ellis; Bühl, Michael (2020-11-04). "Palladium-catalysed methoxycarbonylation of ethene with bidentate diphosphine ligands: a density functional theory study". Physical Chemistry Chemical Physics. 22 (42): 24330–24336. Bibcode:2020PCCP...2224330A. doi:10.1039/D0CP04454G. ISSN 1463-9084. PMID 33104152. S2CID 225072802.
  13. ^ Karlheinz Miltenberger, "Hydroxycarboxylic Acids, Aliphatic" in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim, 2003.
  14. ^ Riemenschneider, Wilhelm; Bolt, Hermann (2000). Esters, Organic. Ullmann's Encyclopedia of Industrial Chemistry. p. 10. doi:10.1002/14356007.a09_565. ISBN 978-3527306732.
  15. ^ Elschenbroich, C. ”Organometallics” (2006) Wiley-VCH: Weinheim. ISBN 978-3-527-29390-2