KNOWPIA
WELCOME TO KNOWPIA

In mathematics, **complex cobordism** is a generalized cohomology theory related to cobordism of manifolds. Its spectrum is denoted by MU. It is an exceptionally powerful cohomology theory, but can be quite hard to compute, so often instead of using it directly one uses some slightly weaker theories derived from it, such as Brown–Peterson cohomology or Morava K-theory, that are easier to compute.

The generalized homology and cohomology complex cobordism theories were introduced by Michael Atiyah (1961) using the Thom spectrum.

The complex bordism of a space is roughly the group of bordism classes of manifolds over with a complex linear structure on the stable normal bundle. Complex bordism is a generalized homology theory, corresponding to a spectrum MU that can be described explicitly in terms of Thom spaces as follows.

The space is the Thom space of the universal -plane bundle over the classifying space of the unitary group . The natural inclusion from into induces a map from the double suspension to . Together these maps give the spectrum ; namely, it is the homotopy colimit of .

Examples: is the sphere spectrum. is the desuspension of .

The nilpotence theorem states that, for any ring spectrum , the kernel of consists of nilpotent elements.^{[1]} The theorem implies in particular that, if is the sphere spectrum, then for any , every element of is nilpotent (a theorem of Goro Nishida). (Proof: if is in , then is a torsion but its image in , the Lazard ring, cannot be torsion since is a polynomial ring. Thus, must be in the kernel.)

John Milnor (1960) and Sergei Novikov (1960, 1962) showed that the coefficient ring (equal to the complex cobordism of a point, or equivalently the ring of cobordism classes of stably complex manifolds) is a polynomial ring on infinitely many generators of positive even degrees.

Write for infinite dimensional complex projective space, which is the classifying space for complex line bundles, so that tensor product of line bundles induces a map A **complex orientation** on an associative commutative ring spectrum *E* is an element *x* in whose restriction to
is 1, if the latter ring is identified with the coefficient ring of *E*. A spectrum *E* with such an element *x* is called a **complex oriented ring spectrum**.

If *E* is a complex oriented ring spectrum, then

and is a formal group law over the ring .

Complex cobordism has a natural complex orientation. Daniel Quillen (1969) showed that there is a natural isomorphism from its coefficient ring to Lazard's universal ring, making the formal group law of complex cobordism into the universal formal group law. In other words, for any formal group law *F* over any commutative ring *R*, there is a unique ring homomorphism from MU^{*}(point) to *R* such that *F* is the pullback of the formal group law of complex cobordism.

Complex cobordism over the rationals can be reduced to ordinary cohomology over the rationals, so the main interest is in the torsion of complex cobordism. It is often easier to study the torsion one prime at a time by localizing MU at a prime *p*; roughly speaking this means one kills off torsion prime to *p*. The localization MU_{p} of MU at a prime *p* splits as a sum of suspensions of a simpler cohomology theory called Brown–Peterson cohomology, first described by Brown & Peterson (1966). In practice one often does calculations with Brown–Peterson cohomology rather than with complex cobordism. Knowledge of the Brown–Peterson cohomologies of a space for all primes *p* is roughly equivalent to knowledge of its complex cobordism.

The ring is isomorphic to the formal power series ring where the elements cf are called Conner–Floyd classes. They are the analogues of Chern classes for complex cobordism. They were introduced by Conner & Floyd (1966).

Similarly is isomorphic to the polynomial ring

The Hopf algebra MU_{*}(MU) is isomorphic to the polynomial algebra R[b_{1}, b_{2}, ...], where R is the reduced bordism ring of a 0-sphere.

The coproduct is given by

where the notation ()_{2i} means take the piece of degree 2*i*. This can be interpreted as follows. The map

is a continuous automorphism of the ring of formal power series in *x*, and the coproduct of MU_{*}(MU) gives the composition of two such automorphisms.

**^**Lurie, Jacob (April 27, 2010), "The Nilpotence Theorem (Lecture 25)" (PDF),*252x notes*, Harvard University

- Adams, J. Frank (1974),
*Stable homotopy and generalised homology*, University of Chicago Press, ISBN 978-0-226-00524-9 - Atiyah, Michael Francis (1961), "Bordism and cobordism",
*Proc. Cambridge Philos. Soc.*,**57**(2): 200–208, Bibcode:1961PCPS...57..200A, doi:10.1017/S0305004100035064, MR 0126856, S2CID 122937421 - Brown, Edgar H. Jr.; Peterson, Franklin P. (1966), "A spectrum whose cohomology is the algebra of reduced
*p*^{th}powers",*Topology*,**5**(2): 149–154, doi:10.1016/0040-9383(66)90015-2, MR 0192494. - Conner, Pierre E.; Floyd, Edwin E. (1966),
*The Relation of Cobordism to K-Theories*, Lecture Notes in Mathematics, vol. 28, Berlin-New York: Springer-Verlag, doi:10.1007/BFb0071091, ISBN 978-3-540-03610-4, MR 0216511 - Milnor, John (1960), "On the cobordism ring and a complex analogue, Part I",
*American Journal of Mathematics*,**82**(3): 505–521, doi:10.2307/2372970, JSTOR 2372970 - Morava, Jack (2007). "Complex cobordism and algebraic topology". arXiv:0707.3216 [math.HO].
- Novikov, Sergei P. (1960), "Some problems in the topology of manifolds connected with the theory of Thom spaces",
*Soviet Math. Dokl.*,**1**: 717–720. Translation of "О некоторых задачах топологии многообразий, связанных с теорией пространств Тома",*Doklady Akademii Nauk SSSR*,**132**(5): 1031–1034, MR 0121815, Zbl 0094.35902. - Novikov, Sergei P. (1962), "Homotopy properties of Thom complexes. (Russian)",
*Mat. Sb.*, New Series,**57**: 407–442, MR 0157381 - Quillen, Daniel (1969), "On the formal group laws of unoriented and complex cobordism theory",
*Bulletin of the American Mathematical Society*,**75**(6): 1293–1298, doi:10.1090/S0002-9904-1969-12401-8, MR 0253350. - Ravenel, Douglas C. (1980), "Complex cobordism and its applications to homotopy theory",
*Proceedings of the International Congress of Mathematicians (Helsinki, 1978)*, vol. 1, Helsinki: Acad. Sci. Fennica, pp. 491–496, ISBN 978-951-41-0352-0, MR 0562646 - Ravenel, Douglas C. (1988), "Complex cobordism theory for number theorists",
*Elliptic Curves and Modular Forms in Algebraic Topology*, Lecture Notes in Mathematics, vol. 1326, Berlin / Heidelberg: Springer, pp. 123–133, doi:10.1007/BFb0078042, ISBN 978-3-540-19490-3, ISSN 1617-9692 - Ravenel, Douglas C. (2003),
*Complex cobordism and stable homotopy groups of spheres*(2nd ed.), AMS Chelsea, ISBN 978-0-8218-2967-7, MR 0860042 - Rudyak, Yuli B. (2001) [1994], "Cobordism",
*Encyclopedia of Mathematics*, EMS Press - Stong, Robert E. (1968),
*Notes on cobordism theory*, Princeton University Press - Thom, René (1954), "Quelques propriétés globales des variétés différentiables",
*Commentarii Mathematici Helvetici*,**28**: 17–86, doi:10.1007/BF02566923, MR 0061823, S2CID 120243638

- Complex bordism at the manifold atlas
- cobordism cohomology theory at the
*n*Lab