In the mid 1980s, Nicolai and Bernard de Wit developed the "N = 8 supergravity theory",[3] which arises from the dimensional reduction of the maximally supersymmetrical eleven-dimensional supergravity to four space-time dimensions (d = 4) and for which, from many plausible viewpoints, a maximal supersymmetry has a supergravity theory with a graviton and no particle with a spin greater than 2.
In the 2000s, Nicolai and colleagues investigated the behavior of gravitational equations close to a gravitational singularity such as the Big Bang;[4] these investigation lead to models with chaotic dynamical billiards, in the case of classical general relativity theory in three dimensions. In the case of eleven-dimensional supergravity, these investigations to ten-dimensional "cosmological billiards", and the infinite-dimensional hyperbolic Kac Moody algebra appears as a symmetry. contains the largest finite-dimensional exceptional semi-simple complex Lie algebra, which has been studied as a candidate for a grand unified theory (GUT].[5] Nicolai proposed a purely algebraic description of the universe in cosmological space-time regions near the singularity (within the Planck time) using the -symmetry, whereby the space-time dimensions result as an emergent phenomenon.[6][7]
Nicolai has also done research on a special role for in M-Theory.
He and de Wit also constructed maximally gauged (N = 16) supergravity theories in three dimensions and their symmetries.[8] Furthermore, Nicolai and colleagues examined generalizations of the variables of loop quantum gravity to supergravity / string theory.
Selected publications
edit
In addition to the publications cited in the footnotes:
Nicolai, H. (1976). "Supersymmetry and spin systems". Journal of Physics A: Mathematical and General. 9 (9): 1497–1506. Bibcode:1976JPhA....9.1497N. doi:10.1088/0305-4470/9/9/010. hdl:11858/00-001M-0000-0013-5EC7-2. S2CID 122243667.
Nicolai, Hermann (1980). "On a new characterization of scalar supersymmetric theories". Physics Letters B. 89 (3–4): 341–346. Bibcode:1980PhLB...89..341N. doi:10.1016/0370-2693(80)90138-0. hdl:11858/00-001M-0000-0013-5E95-1.
De Wit, B.; Nicolai, H. (1987). "The consistency of the S7 truncation in d=11 supergravity". Nuclear Physics B. 281 (1–2): 211–240. Bibcode:1987NuPhB.281..211D. doi:10.1016/0550-3213(87)90253-7. hdl:11858/00-001M-0000-0013-5DA7-E.
De Wit, B.; Hoppe, J.; Nicolai, H. (1988). "On the quantum mechanics of supermembranes". Nuclear Physics B. 305 (4): 545–581. Bibcode:1988NuPhB.305..545D. doi:10.1016/0550-3213(88)90116-2. hdl:11858/00-001M-0000-0013-5D4D-7. (over 950 citation)
De Wit, B.; Lüscher, M.; Nicolai, H. (1989). "The supermembrane is unstable". Nuclear Physics B. 320 (1): 135–159. Bibcode:1989NuPhB.320..135D. doi:10.1016/0550-3213(89)90214-9. hdl:11858/00-001M-0000-0013-5D23-3.
Nicolai, H.; Samtleben, H. (2001). "Maximal Gauged Supergravity in Three Dimensions". Physical Review Letters. 86 (9): 1686–1689. arXiv:hep-th/0010076. Bibcode:2001PhRvL..86.1686N. doi:10.1103/PhysRevLett.86.1686. PMID 11290224. S2CID 20407583. arXiv.org
Damour, T.; Henneaux, M.; Nicolai, H. (2002). "E10 and a "Small Tension Expansion" of M Theory". Physical Review Letters. 89 (22): 221601-1–221601-4. arXiv:hep-th/0207267. Bibcode:2002PhRvL..89v1601D. doi:10.1103/PhysRevLett.89.221601. PMID 12485059. S2CID 15550004. arXiv.org
Damour, T.; Henneaux, M.; Nicolai, H. (2003). "Cosmological billiards". Classical and Quantum Gravity. 20 (9): R145–R200. doi:10.1088/0264-9381/20/9/201. hdl:11858/00-001M-0000-0013-522A-4. S2CID 250877925. arXiv.org
Nicolai, Hermann; Peeters, Kasper; Zamaklar, Marija (2005). "Loop quantum gravity: An outside view". Classical and Quantum Gravity. 22 (19): R193–R247. doi:10.1088/0264-9381/22/19/R01. hdl:11858/00-001M-0000-0013-4EAC-A. S2CID 14106366. arXiv.org
Meissner, Krzysztof A.; Nicolai, Hermann (2007). "Conformal symmetry and the Standard Model". Physics Letters B. 648 (4): 312–317. arXiv:hep-th/0612165. Bibcode:2007PhLB..648..312M. doi:10.1016/j.physletb.2007.03.023. S2CID 17973378.
Damour, Thibault; Nicolai, Hermann (2008). "Symmetries, Singularities and the De-Emergence of Space". International Journal of Modern Physics D. 17 (3n04): 525–531. arXiv:0705.2643. Bibcode:2008IJMPD..17..525D. doi:10.1142/S0218271808012206. S2CID 18836818.
Bossard, Guillaume; Hillmann, Christian; Nicolai, Hermann (2010). "E7(7) symmetry in perturbatively quantized 𝓝 = 8 supergravity". Journal of High Energy Physics. 2010 (12): 52. arXiv:1007.5472. Bibcode:2010JHEP...12..052B. doi:10.1007/JHEP12(2010)052. S2CID 119241453.
Nicolai, Hermann; Kleinschmidt, Axel (2010). "E10: Eine fundamentale Symmetrie der Physik? Neuer Zugang zur Quantengravitation". Physik in unserer Zeit. 41 (3): 134–140. Bibcode:2010PhuZ...41..134N. doi:10.1002/piuz.201001228. hdl:11858/00-001M-0000-0012-69E6-E. S2CID 209833479.
Bossard, Guillaume; Nicolai, Hermann (2011). "Counterterms vs. Dualities". Journal of High Energy Physics. 2011 (8): 74. arXiv:1105.1273. Bibcode:2011JHEP...08..074B. doi:10.1007/JHEP08(2011)074. S2CID 119181313.
Nicolai, Hermann (2014). "Quantum Gravity: The View from Particle Physics". General Relativity, Cosmology and Astrophysics. pp. 369–387. arXiv:1301.5481. doi:10.1007/978-3-319-06349-2_18. ISBN 978-3-319-06348-5. S2CID 117589936. Quantum gravity - the view from particle physics, Prag 2013, arXiv.org
^Nicolai and his colleagues investigated the theoretical implications of the BKL singularity introduced by Belinski, Khalatnikov, and Lifschitz in general relativity
^Damour, Thibault; Henneaux, Marc (2001). "E10, BE10 and Arithmetical Chaos in Superstring Cosmology". Physical Review Letters. 86 (21): 4749–4752. arXiv:hep-th/0012172. Bibcode:2001PhRvL..86.4749D. doi:10.1103/PhysRevLett.86.4749. PMID 11384339. S2CID 40345084. Thibault Damour and Marc Henneaux were the first to publish the specific theory of arithmetical chaos in superstring cosmology providing the basis for such research.
^Murugan, Jeff; Weltman, Amanda; Ellis, George F. R., eds. (2009). "Chapter 6. Cosmological quantum billiards by Axel Kleinschmidt and Hermann Nicolai". Proceedings, Foundations of Space and Time: Reflections on Quantum Gravity. Cambridge University Press. pp. 106–124. ISBN 9780521114400. arXiv.org
^De Wit, Bernard; Nicolai, H.; Samtleben, H. (2004). "Gauged Supergravities in Three Dimensions: A Panoramic Overview". Proceedings of 27th Johns Hopkins Workshop on Current Problems in Particle Theory: Symmetries and Mysteries of M Theory — PoS(jhw2003). p. 016. doi:10.22323/1.011.0016. S2CID 15349626. arXiv.org
External links
edit
Max Planck Institute for Gravitational Physics (homepage)
"Interview mit den Physiker Hermann — Ein grosses Rätsel bleibt". Potsdamer Neueste Nachrichten. 13 March 2013. Archived from the original on 27 March 2017. Retrieved 27 December 2021.