In quantum mechanics, a matrix product state (MPS) is a quantum state of many particles (in N sites), written in the following form:
where are complex, square matrices of order (this dimension is called local dimension). Indices go over states in the computational basis. For qubits, it is . For qudits (d-level systems), it is .
It is particularly useful for dealing with ground states of one-dimensional quantum spin models (e.g. Heisenberg model (quantum)).
The parameter is related to the entanglement between particles. In particular, if the state is a product state (i.e. not entangled at all), it can be described as a matrix product state with .
For states that are translationally symmetric, we can choose:
In general, every state can be written in the MPS form (with growing exponentially with the particle number N). However, MPS are practical when is small – for example, does not depend on the particle number. Except for a small number of specific cases (some mentioned in the section Examples), such a thing is not possible, though in many cases it serves as a good approximation.
The MPS decomposition is not unique. For introductions see [1] and.[2] In the context of finite automata see.[3] For emphasis placed on the graphical reasoning of tensor networks, see the introduction.[4]
Obtaining MPS
edit
One method to obtain an MPS representation of a quantum state is to use Schmidt decompositionN − 1 times. Alternatively if the quantum circuit which prepares the many body state is known, one could first try to obtain a matrix product operator representation of the circuit. The local tensors in the matrix product operator will be four index tensors. The local MPS tensor is obtained by contracting one physical index of the local MPO tensor with the state which is injected into the quantum circuit at that site.
This notation uses matrices with entries being state vectors (instead of complex numbers), and when multiplying matrices using tensor product for its entries (instead of product of two complex numbers). Such matrix is constructed as
^ ab
Perez-Garcia, D.; Verstraete, F.; Wolf, M.M. (2008). "Matrix product state representations". Quantum Inf. Comput. 7: 401. arXiv:quant-ph/0608197.
^
Verstraete, F.; Murg, V.; Cirac, J.I. (2008). "Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems". Advances in Physics. 57 (2): 143–224. arXiv:0907.2796. Bibcode:2008AdPhy..57..143V. doi:10.1080/14789940801912366. S2CID 17208624.
^ ab
Crosswhite, Gregory; Bacon, Dave (2008). "Finite automata for caching in matrix product algorithms". Physical Review A. 78 (1): 012356. arXiv:0708.1221. Bibcode:2008PhRvA..78a2356C. doi:10.1103/PhysRevA.78.012356. S2CID 4879564.
^
Biamonte, Jacob; Bergholm, Ville (2017). "Tensor Networks in a Nutshell". arXiv:1708.00006 [quant-ph].
^
Affleck, Ian; Kennedy, Tom; Lieb, Elliott H.; Tasaki, Hal (1987). "Rigorous results on valence-bond ground states in antiferromagnets". Physical Review Letters. 59 (7): 799–802. Bibcode:1987PhRvL..59..799A. doi:10.1103/PhysRevLett.59.799. PMID 10035874.
^
Schollwöck, Ulrich (2011). "The density-matrix renormalization group in the age of matrix product states". Annals of Physics. 326 (1): 96–192. arXiv:1008.3477. Bibcode:2011AnPhy.326...96S. doi:10.1016/j.aop.2010.09.012. S2CID 118735367.
External links
edit
Open-source review article focused on tensor network algorithms, applications, and software
State of Matrix Product States – Physics Stack Exchange
A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States
Hand-waving and Interpretive Dance: An Introductory Course on Tensor Networks
Tensor Networks in a Nutshell: An Introduction to Tensor Networks