KNOWPIA
WELCOME TO KNOWPIA

**Sabir Medgidovich Gusein-Zade** (Russian: Сабир Меджидович Гусейн-Заде; born 29 July 1950 in Moscow^{[1]}) is a Russian mathematician and a specialist in singularity theory and its applications.^{[2]}

He studied at Moscow State University, where he earned his Ph.D. in 1975 under the joint supervision of Sergei Novikov and Vladimir Arnold.^{[3]} Before entering the university, he had earned a gold medal at the International Mathematical Olympiad.^{[2]}

Gusein-Zade co-authored with V. I. Arnold and A. N. Varchenko the textbook *Singularities of Differentiable Maps* (published in English by Birkhäuser).^{[2]}

A professor in both the Moscow State University and the Independent University of Moscow, Gusein-Zade also serves as co-editor-in-chief for the *Moscow Mathematical Journal*.^{[4]} He shares credit with Norbert A'Campo for results on the singularities of plane curves.^{[5]}^{[6]}^{[7]}

- S. M. Gusein-Zade. "Dynkin diagrams for singularities of functions of two variables".
*Functional Analysis and Its Applications*, 1974, Volume 8, Issue 4, pp. 295–300. - S. M. Gusein-Zade. "Intersection matrices for certain singularities of functions of two variables".
*Functional Analysis and Its Applications*, 1974, Volume 8, Issue 1, pp. 10–13. - A. Campillo, F. Delgado, and S. M. Gusein-Zade. "The Alexander polynomial of a plane curve singularity via the ring of functions on it".
*Duke Mathematical Journal*, 2003, Volume 117, Number 1, pp. 125–156. - S. M. Gusein-Zade. "The problem of choice and the optimal stopping rule for a sequence of independent trials".
*Theory of Probability & Its Applications*, 1965, Volume 11, Number 3, pp. 472–476. - S. M. Gusein-Zade. "A new technique for constructing continuous cartograms".
*Cartography and Geographic Information Systems*, 1993, Volume 20, Issue 3, pp. 167–173.

**^**Home page of Sabir Gusein-Zade- ^
^{a}^{b}^{c}Artemov, S. B.; Belavin, A. A.; Buchstaber, V. M.; Esterov, A. I.; Feigin, B. L.; Ginzburg, V. A.; Gorsky, E. A.; Ilyashenko, Yu. S.; Kirillov, A. A.; Khovanskii, A. G.; Lando, S. K.; Margulis, G. A.; Neretin, Yu. A.; Novikov, S. P.; Shlosman, S. B.; Sossinsky, A. B.; Tsfasman, M. A.; Varchenko, A. N.; Vassiliev, V. A.; Vlăduţ, S. G. (2010), "Sabir Medgidovich Gusein-Zade",*Moscow Mathematical Journal*,**10**(4). **^**Sabir Gusein-Zade at the Mathematics Genealogy Project**^**Editorial Board (2011), "Sabir Gusein-Zade – 60" (PDF), Anniversaries,*TWMS Journal of Pure and Applied Mathematics*,**2**(1): 161.**^**Wall, C. T. C. (2004),*Singular Points of Plane Curves*, London Mathematical Society Student Texts,**63**, Cambridge University Press, Cambridge, p. 152, doi:10.1017/CBO9780511617560, ISBN 978-0-521-83904-4, MR 2107253,An important result, due independently to A'Campo and Gusein-Zade, asserts that every plane curve singularity is equisingular to one defined over and admitting a real morsification with only 3 critical values

.**^**Brieskorn, Egbert; Knörrer, Horst (1986),*Plane Algebraic Curves*, Modern Birkhäuser Classics, Basel: Birkhäuser, p. vii, doi:10.1007/978-3-0348-5097-1, ISBN 978-3-0348-0492-9, MR 2975988,I would have liked to introduce the beautiful results of A'Campo and Gusein-Zade on the computation of the monodromy groups of plane curves

. Translated from the German original by John Stillwell, 2012 reprint of the 1986 edition.**^**Rieger, J. H.; Ruas, M. A. S. (2005), "M-deformations of -simple -germs from to ",*Mathematical Proceedings of the Cambridge Philosophical Society*,**139**(2): 333–349, doi:10.1017/S0305004105008625, MR 2168091,For map-germs very little is known about the existence of M-deformations beyond the classical result by A’Campo and Gusein–Zade that plane curve-germs always have M-deformations.

- Sabir Gusein-Zade's results at International Mathematical Olympiad