Sectrix of Maclaurin

Summary

In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin (named for Colin Maclaurin), which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts. There are special cases known as arachnida or araneidans because of their spider-like shape, and Plateau curves after Joseph Plateau who studied them.

Sectrix of Maclaurin: example with q0 = PI/2 and K = 3

Equations in polar coordinates edit

We are given two lines rotating about two poles   and  . By translation and rotation we may assume   and  . At time  , the line rotating about   has angle   and the line rotating about   has angle  , where  ,  ,   and   are constants. Eliminate   to get   where   and  . We assume   is rational, otherwise the curve is not algebraic and is dense in the plane. Let   be the point of intersection of the two lines and let   be the angle at  , so  . If   is the distance from   to   then, by the law of sines,

 

so

 

is the equation in polar coordinates.

The case   and   where   is an integer greater than 2 gives arachnida or araneidan curves

 

The case   and   where   is an integer greater than 1 gives alternate forms of arachnida or araneidan curves

 

A similar derivation to that above gives

 

as the polar equation (in   and  ) if the origin is shifted to the right by  . Note that this is the earlier equation with a change of parameters; this to be expected from the fact that two poles are interchangeable in the construction of the curve.

Equations in the complex plane, rectangular coordinates and orthogonal trajectories edit

Let   where   and   are integers and the fraction is in lowest terms. In the notation of the previous section, we have   or  . If   then  , so the equation becomes   or  . This can also be written

 

from which it is relatively simple to derive the Cartesian equation given m and n. The function   is analytic so the orthogonal trajectories of the family   are the curves  , or  

Parametric equations edit

Let   where   and   are integers, and let   where   is a parameter. Then converting the polar equation above to parametric equations produces

 .

Applying the angle addition rule for sine produces

 .

So if the origin is shifted to the right by a/2 then the parametric equations are

 .

These are the equations for Plateau curves when  , or

 .

Inversive triplets edit

The inverse with respect to the circle with radius a and center at the origin of

 

is

 .

This is another curve in the family. The inverse with respect to the other pole produces yet another curve in the same family and the two inverses are in turn inverses of each other. Therefore each curve in the family is a member of a triple, each of which belongs to the family and is an inverse of the other two. The values of q in this family are

 .

Sectrix properties edit

Let   where   and   are integers in lowest terms and assume   is constructible with compass and straightedge. (The value of   is usually 0 in practice so this is not normally an issue.) Let   be a given angle and suppose that the sectrix of Maclaurin has been drawn with poles   and   according to the construction above. Construct a ray from   at angle   and let   be the point of intersection of the ray and the sectrix and draw  . If   is the angle of this line then

 

so  . By repeatedly subtracting   and   from each other as in the Euclidean algorithm, the angle   can be constructed. Thus, the curve is an m-sectrix, meaning that with the aid of the curve an arbitrary angle can be divided by any integer. This is a generalization of the concept of a trisectrix and examples of these will be found below.

Now draw a ray with angle   from   and   be the point of intersection of this ray with the curve. The angle of   is

 

and subtracting   gives an angle of

 .

Applying the Euclidean Algorithm again gives an angle of   showing that the curve is also an n-sectrix.

Finally, draw a ray from   with angle   and a ray from   with angle  , and let   be the point of intersection. This point is on the perpendicular bisector of   so there is a circle with center   containing   and  .   so any point on the circle forms an angle of   between   and  . (This is, in fact, one of the Apollonian circles of P and P'.) Let   be the point intersection of this circle and the curve. Then   so

 .

Applying a Euclidean algorithm a third time gives an angle of  , showing that the curve is an (mn)-sectrix as well.

Specific cases edit

q = 0 edit

This is the curve

 

which is a line through  .

q = 1 edit

This is a circle containing the origin and  . It has polar equation

 .

It is the inverse with respect to the origin of the q = 0 case. The orthogonal trajectories of the family of circles is the family   These form the Apollonian circles with poles   and  .

q = -1 edit

These curves have polar equation

 ,

complex equation   In rectangular coordinates this becomes   which is a conic. From the polar equation it is evident that the curves has asymptotes at   and   which are at right angles. So the conics are, in fact, rectangular hyperbolas. The center of the hyperbola is always  . The orthogonal trajectories of this family are given by   which is the family of Cassini ovals with foci   and  .

Trisectrix of Maclaurin edit

In the case where   (or   by switching the poles) and  , the equation is

 .

This is the Trisectrix of Maclaurin which is specific case whose generalization is the sectrix of Maclaurin. The construction above gives a method that this curve may be used as a trisectrix.

Limaçon trisectrix and rose edit

In the case where   (or   by switching the poles) and  , the equation is

 .

This is the Limaçon trisectrix.

The equation with the origin take to be the other pole is the rose curve that has the same shape

 .

The 3 in the numerator of q and the construction above give a method that the curve may be used as a trisectrix.

References edit

  • "Sectrice de Maclaurin" at Encyclopédie des Formes Mathématiques Remarquables (In French)
  • Weisstein, Eric W. "Arachnida". MathWorld.
  • Weisstein, Eric W. "Plateau Curves". MathWorld.