Lava Formation

Summary

The Lava Formation is a Mesozoic geologic formation in Lithuania and Kaliningrad, being either the sister or the same unit as the Ciechocinek Formation.[7][8] It represents the outcrop of Lower Toarcian layers in the Baltic Syncline and in the Lithuanian-Polish Syneclise (C8-borehole in Gdańsk Bay). It is known by the presence of Miospores and Pollen, as well Plant remains.[9] The formation contains grey, greenish, and dark grey silt and clay with interealatians and lenses of fine-grained sand, pyritic concretions and plant remains (carbonised wood fragments).[10] The Jotvingiai Group Toarcian deposits represent deposits laid down in fresh water and brackish basins, possibly lagoons or coastal plain lakes.[11] The Bartoszyce IG 1 of the Ciechocinek Formation shows how at the initial phase of the Toarcian there was a regional transgression in the Baltic Syncline, indicated by greenish-grey mudstones, heteroliths and fine-grained sandstones with abundant plant fossils and plant roots, what indicates a local delta progradation between the Lava and Ciechocinek Fms.[8] Then a great accumulation of miospores (+2500 specimens) indicates a local concentration, likely due to a rapidly decelerating fluvial flow in a delta-fringing lagoon forming a “hydrodynamic trap”, with the wave and currents stopping the miospores to spread to the basin.[8] Latter a marsh system developed with numerous palaeosol levels, being overlayed by brackish-marine embayment deposits that return to lagoon-marsh facies with numerous plant roots (Radicites sp) and palaeosol levels in the uppermost section, ending the succession.[8] Overall the facies show that the local Ciechocinek-Lava system was a sedimentary basin shallow and isolated, surrounded by a flat coastal/delta plain with marshes, delivering abundant spores and Phytoclasts, indicators of proximal landmasses with high availability of wood and other plant material.[8] This climate at the time of deposition was strongly seasonal, probably with monsoonal periods.[12] Due to the abundant presence of deltaic sediments on the upper part, it is considered to be related to the retry of the sea level. The Lava Formation was deposited on a mostly continental setting, with its upper part, dominated by argillaceous sediments, corresponding to the Ciechocinek Formation.[8] There is a great amount of kaolinite content, being present laterally in the basin, decreasing and lifting space to increasing smectite to the south-west of the formation. On the other hand, there is a great amount of coarsest sediments, which consist mostly of sands.[13]

Lava Formation
Stratigraphic range: Lower Toarcian 183–179 Ma
[1]
TypeGeological formation
Unit ofJotvingiai Group[2]
UnderliesSkalviai Group
OverliesNeringa Formation
Thickness45 m [3]
Lithology
PrimarySandstone and clay with a coaly admixture and the inclusion of wood remains.[4][5]
OtherShallow, continental basins with sandy-clayey sediments deposited with traces of breaks and weathering. Upper part is dominated by argillaceous sediments. Cemented sandstones with interlayers of kaolinite-hydromica clays.[6]
Location
Country Lithuania
 Kaliningrad Oblast
Type section
Named forLava River

Palynology edit

Genus Species Stratigraphic position Material Notes Images

Leiotriletes[14]

  • Leiotriletes rotundiformis
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with Botryopteridaceae, Cooksoniaceae, Schizaeaceae, Sermayaceae and Zosterophyllaceae. Likely reworked from Devonian-Permian layers

Acanthotriletes[14][15]

  • Acanthotriletes elatus
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the Botryopteridaceae and Selaginellaceae. Reworked from primitive ferns found in Devonian and Carboniferous rocks of Europe

Staplinisporites[15]

  • Staplinisporites caminus
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the family Encalyptaceae inside Bryopsida. Branching Moss Spores, related with high water-depleting environments

 
Example of extant Encalypta specimens, Staplinisporites come probably from similar genera

Lycopodiumsporites[14][15]

  • Lycopodiumsporites semimuris
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the family Lycopodiaceae inside Lycopodiopsida.

Foveosporites[14][15]

  • Foveosporites microreticulatus
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the family Lycopodiaceae inside Lycopodiopsida. Lycopod spores, related with herbaceous to arbustive flora common on humid environments

 
Extant Lycopodium specimens. Genera like Foveosporites probably come from a similar plant

Uvaesporites[14]

  • Uvaesporites argenteaeformis
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the Selaginellaceae inside Lycopsida.

Densoisporites[14][15]

  • Densoisporites crassus
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the Selaginellaceae inside Lycopsida. Relatively abundant

Heliosporites[14]

  • Heliosporites altmarkensis
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the Selaginellaceae inside Lycopsida. Herbaceous Lycophyte flora, similar to Ferns, ralated with Humid Settings. This Family of Spores are also the most diverse on the Formation.

 
Extant Selaginella, Heliosporites probably come from a similar or a related Plant

Leiozonotriletes[14]

  • Leiozonotriletes sp sp. nov.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Uncertain Affinities with the Pteridopsida.

Cingulatisporites[14]

  • Cingulatisporites scabratus
  • Cingulatisporites sp sp. nov.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with Cibotiaceae and Selaginellaceae inside Pteridopsida. Relatively abundant

Leptolepidites[14][15]

  • Leptolepidites major
  • Leptolepidites sp sp. nov.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the family Dennstaedtiaceae inside Polypodiales. Forest Fern Spores

 
Example of extant Dennstaedtia specimens, Leptolepidites come probably from similar genera

Pilosisporites[14]

  • Pilosisporites brevipapillosus
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miopores

Affinities with Schizaeaceae and Lygodiaceae inside Pteridophyta. Either from herbaceous or climbing ferns

Klukisporites[14][15][16]

  • Klukisporites sp sp. nov.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole
  • C8-borehole

Miospores

Affinities with the family Lygodiaceae inside Polypodiopsida. Climbing fern spores

 
Example of extant Lygodium, Lygodioisporites come probably from similar genera or maybe a species from the genus

Clathropterisospora[14][15]

  • Clathropterisospora obovata
  • Clathropterisospora "sp. 1"
  • Clathropterisospora "sp. 2"
  • Nida-44 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with Dipteridaceae inside Polypodiales.

Dictyophyllidites[14][15]

  • Dictyophyllidites sp sp. nov.
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with Dipteridaceae inside Polypodiales. Dictyophyllum is a common Dipteridacean genus of the mid-Mesozoic

 
Dictyophyllum nilssonii specimen

Marattiopsis[14][15]

  • Marattiopsis scabratus
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the Marattiaceae inside Polypodiopsida.

Matonisporites[14][15]

  • Matonisporites phlebopteroides
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miopores

Affinities with the Matoniaceae inside Polypodiopsida. Fern spores from lower herbaceous flora

 
Example of extant Matonia specimens, Matonisporites come probably from similar genera

Cyathidites[14]

  • Cyathidites minor
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the family Cyatheaceae inside Cyatheales. Arboreal Fern Spores

 
Example of extant Cyathea, Cyathidites come probably from similar genera

Tripartina[14][15][16]

  • Tripartina variabilis
  • Tripartina sp sp. nov.
  • Nida-44 Borehole
  • C8-borehole

Miospores

Affinities with Dicksoniaceae inside Cyatheales. Common cosmopolitan Mesozoic Tree fern genus.

 
Coniopteris specimen

Camptotriletes[14][15]

  • Camptotriletes anagrammensis
  • Camptotriletes cerebriformis
  • Camptotriletes triangularis
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the Lepidodendraceae and Botryopteridaceae. Reworked Carboniferous Palynomorphs

Hymenozonotriletes[14]

  • Hymenozonotriletes dalinkevidiusi
  • Hymenozonotriletes speciosus
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Miospores

Affinities with the Lepidodendraceae. Reworked

Protopinus[14][15]

  • Protopinus sp sp. nov.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Pollen

Pollen from the Family Caytoniaceae inside Caytoniales. Caytoniaceae are a complex group of Mesozoic Fossil floras, that can be related to both Peltaspermales and Ginkgoaceae.

Chasmatosporites[14][16]

  • Chasmatosporites apertus
  • Chasmatosporites hians
  • Chasmatosporites sp.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole
  • C8-borehole

Affinities with the family Cycadaceae inside Cycadales. Is among the most abundant flora recovered on the upper section of the coeval Rya Formation, and was found to be similar to the pollen of the extant Encephalartos laevifolius.[17]

 
Extant Encephalartos laevifolius. Chasmatosporites maybe come from a related plant

Paleoconiferus[14][15]

  • Paleoconiferus sp sp. nov.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Pollen

Affinities with the Voltziaceae, Pinaceae, Cupressaceae and Araucariaceae inside Pinopsida.

Pseudopinus[14][15]

  • Pseudopinus oblatinoides
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Pollen

Affinities with the Voltziaceae inside Pinopsida.

Protopodocarpus[14][15]

  • Protopodocarpus sp sp. nov.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Pollen

Affinities with the Voltziaceae inside Pinopsida.

Paleopicea[14][15]

  • Paleopicea sp sp. nov.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Pollen

Affinities with the Pinaceae and Voltziaceae inside Pinopsida.

Pseudopicea[14][15]

  • Pseudopicea sp. sp. nov.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole

Pollen

Affinities with the Pinaceae inside Pinopsida. Relatively abundant Pinaceae Pollen, appears specially on Kaolinite-abundant strata.

 
Extant Picea. Pseudopicea maybe come from a related plant

Cerebropollenites[14][15][16]

  • Cerebropollenites dalinkeviciusi
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole
  • C8-borehole

Pollen

Affinities with the Sciadopityaceae or Miroviaceae inside Coniferales. This Pollen resemblance with extant Sciadopitys suggest that Miroviaceae can be an extinct lineage of sciadopityaceaous-like plants.[18]

 
Extant Sciadopitys. Cerebropollenites likely come from a related plant

Perinopollenites[14][16]

  • Perinopollenites sp sp. nov.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole
  • C8-borehole

Pollen

Affinities with the family Cupressaceae inside Pinopsida. Pollen that resembles extant genera such as the Genus Actinostrobus and Austrocedrus, probably derived from Dry environments.

 
Extant Austrocedrus. Perinopollenites maybe come from a related plant

Cupressacites[16]

  • Cupressacites coriaceus
  • Cupressacites subgranulatus
  • C8-borehole

Pollen

Affinities with the family Cupressaceae inside Pinopsida.

Taxodiites[16]

  • Taxodiites pallens
  • C8-borehole

Pollen

Affinities with the family Cupressaceae inside Pinopsida.

Classopollis[14][15][16]

  • Classopollis corniculatus
  • Classopollis sp.1 sp. nov.
  • Classopollis sp.2 sp. nov.
  • Classopollis sp.3 sp. nov.
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole
  • Uljanovo-3 Borehole
  • Kybartai-29 Borehole
  • C8-borehole

Pollen

Affinities with the Cheirolepidiaceae inside Pinopsida. Indicator of Dry settings

Megaflora edit

Genus Species Stratigraphic position Material Notes Images

Phlebopteris[3][12][15]

  • Phlebopteris cf. smithii
  • Nida-44 Borehole

Isolated pinnae

Affinities with Matoniaceae inside Gleicheniales.

 
Example of Phlebopteris specimen

Ginkgoites[4][3][12]

  • Ginkgoites acuta
  • Ginkgoites "sp. 1"
  • Nida-44 Borehole
  • Belyj Jar-1 Borehole

Leaves

Affinities with Ginkgoaceae inside Ginkgoales. Large to medium Arboreal trees, common on the Fennoscandinavian realm, but also on the Siberian strata

 
Ginkgoites specimen

Picea?[4][14][15]

  • Picea? sp sp. nov.
  • Picea? sp.1 sp. nov.
  • Picea? sp.2 sp. nov.
  • Nida-44 Borehole
  • Uljanovo-3 Borehole

Cones

Affinities with the Piceoideae inside Coniferales.

 
Example of extant Picea cones

Pinus?[14][15]

  • Pinus? sp sp. nov.
  • Nida-44 Borehole

Cones

Affinities with the Pinaceae inside Coniferales.

 
Example of extant Pinus cones

Podozamites[4][14][15]

  • Podozamites sp sp. nov.
  • Nida-44 Borehole

Leaves

Affinities with Krassiloviaceae inside Voltziales. The local Podozamites show a rather great range of Growth, reflecting Tropical to subtropical conditions.

 
Podozamites reconstruction

Elatocladus[4][3][12][15]

  • Elatocladus sp.
  • Nida-44 Borehole

Leaves

Affinities with the Cupressaceae inside Coniferales.

 
Elatocladus

See also edit

References edit

  1. ^ Grigelis, A. (2007). "Geology of Lithuania (Lietuva)". Geology of the Land and Sea Areas of Northern Europe: A Collection of Short Descriptions of the Geology of Countries and Sea Are as within the Region Covered by the. 1 (4): 51–55. Retrieved 4 January 2022.
  2. ^ Grigelis, A. (1982). Geology of the Soviet Baltic Republics. Leningrad: Publishing House "Nedra". p. 167. Retrieved 4 January 2022.
  3. ^ a b c d Grigelis, A. (1994). "Jura". Lietuvos geologija. Grigelis, A. & Kadūnas, V. (Eds.). Mokslo ir enciklopedijų leidykla, Vilnius. 1 (1): 139–153.
  4. ^ a b c d e Šimkevičius, P. (2004). "Triasas ir jura". Lietuvos Žemės gelmių raida ir ištekliai. Geologijos ir geografijos institutas, Vilnius. 12 (3): 81–90.
  5. ^ Paškevičius, J. (1997). "The geology of the Baltic Republics". Lietuvos geologijos tarnyba, Vilnius. 387 (3): 13–78.
  6. ^ Zhamoida, V.; Sivkov, V.; Nesterova, E. (2017). "Mineral resources of the Kaliningrad Region". In Terrestrial and Inland Water Environment of the Kaliningrad Region. 56 (3): 13–32. doi:10.1007/698_2017_115.
  7. ^ Grigelis, A.; Monkevich, K.; Vishniakov, I. (1985). "Sedimentatsiya i paleogeograftya mezozoya v zapadnoy chasti Vostochno-Evropeyskoy platformy (Mesozoic sedimentation and palaeogeography in the western part of the East European Platform)". Nauka I Technika. 23 (1): 1–215.
  8. ^ a b c d e f Pieñkowski, G. (2004). "The epicontinental Lower Jurassic of Poland". Polish Geological Institute Special Papers. 12 (1): 1–154. S2CID 128922070.
  9. ^ McCann, T. (2008). The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic. London: Geological Society of London. pp. 883–922. Retrieved 4 January 2022.
  10. ^ Grigelis, A.; Norling, E. (1999). "Jurassic geology and foraminiferal faunas in the NW part of the East European Plalform: a Lithuanian-Swedish geotraverse study" (PDF). Sveriges Geologiska Undersökning. 89 (2): 1–108. Retrieved 15 January 2022.
  11. ^ Šimkevičius, P.; Ahlberg, A.; Grigelis, A. (2003). "Jurassic smectite and kaolinite trends of the East European Platform: implications for palaeobathymetry and palaeoclimate". Terra Nova. 15 (4): 225–229. Bibcode:2003TeNov..15..225S. doi:10.1046/j.1365-3121.2003.00489.x. S2CID 129123079. Retrieved 4 January 2022.
  12. ^ a b c d Simkevicius, P. (1998). Jurassic of the SE Baltic: Lithology and Clay Minerals. Vilnius: Lithuanian Institute of Geology.
  13. ^ Grigelis, Algimantas (1994). "Lithostratigraphy of the Jurassic in Lithuania: Lower and Middle Jurassic". Geologija. 17 (4): 30–35. Retrieved 4 January 2022.
  14. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag Venozhinskene, A.I. (1971). "Palynological indications of the Early Jurassic deposits in the southern part of the Balticum [Palinologicheskoe Obosnovaie Nizhneyurskikh otlozhenii Yuzhnboi Pribaltiki]". Trudy Ministerstvo Geologii SSR,Akademiya Nauk SSR. 45 (3): 19–30.
  15. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Venozhinskene, A.I.; Kisnerius, J. (1978). "Stratigraphy of Upper Triassic, (Rhaetian,), Jurassic, (Pre Middle Callovian), continental deposits of the western part of the southern Baltic area [ Stratigrafiya verkhetriasovykh (retskikh) Yurskikh (Dosrednekelloveiskikh) kontinental'nykh otlozhenii Zaladnoi Chasti Yuzhnoi Pribaltiki]". Trudy Ministerstvo Geologii SSR,Akademiya Nauk. 53 (5): 127–138.
  16. ^ a b c d e f g h Vasileva, N.S. (1973). "Mesozoic spore-pollen assemblages of the South Baltic off-shore region and their stratigraphic significance". International Palynological Conference,3rd, Proceedings; Nauka, Moscow, Russia. 6 (2): 104–108.
  17. ^ Guy-Ohlson, D.. 1988. The use of dispersed palynomorphs referable to the form genus Chasmatosporites (Nilsson) Pocock and Jansonius, in Jurassic biostratigraphy. Congreso Argentino de Paleontologia y Bioestratigrafia 3(1–2). 5- 13. Accessed 09 April 2021.
  18. ^ Hofmann, Christa-Ch.; Odgerel, Nyamsambuu; Seyfullah, Leyla J. (2021). "The occurrence of pollen of Sciadopityaceae Luerss. through time". Fossil Imprint. 77 (2): 271–281. doi:10.37520/fi.2021.019. S2CID 245555379. Retrieved 27 December 2021.

Further reading edit

  • Weishampel, David B.; Dodson, Peter; and Osmólska, Halszka (eds.): The Dinosauria, 2nd, Berkeley: University of California Press. 861 pp. ISBN 0-520-24209-2.