Order-5 square tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 45 |
Schläfli symbol | {4,5} |
Wythoff symbol | 5 | 4 2 |
Coxeter diagram | |
Symmetry group | [5,4], (*542) |
Dual | Order-4 pentagonal tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
In geometry, the order-5 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,5}.
Spherical | Hyperbolic tilings | |||||||
---|---|---|---|---|---|---|---|---|
{2,5} |
{3,5} |
{4,5} {5,5} |
{6,5} |
{7,5} |
{8,5} |
... | {∞,5} |
This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4n).
*n42 symmetry mutation of regular tilings: {4,n} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical | Euclidean | Compact hyperbolic | Paracompact | ||||||||
{4,3} |
{4,4} |
{4,5} {4,6} |
{4,7} |
{4,8}... |
{4,∞} |
Uniform pentagonal/square tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [5,4], (*542) | [5,4]+, (542) | [5+,4], (5*2) | [5,4,1+], (*552) | ||||||||
{5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | ||
Uniform duals | |||||||||||
V54 | V4.10.10 | V4.5.4.5 | V5.8.8 | V45 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V55 |
This hyperbolic tiling is related to a semiregular infinite skew polyhedron with the same vertex figure in Euclidean 3-space.