Snub triapeirogonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 3.3.3.3.∞ |
Schläfli symbol | sr{∞,3} or |
Wythoff symbol | | ∞ 3 2 |
Coxeter diagram | or |
Symmetry group | [∞,3]+, (∞32) |
Dual | Order-3-infinite floret pentagonal tiling |
Properties | Vertex-transitive Chiral |
In geometry, the snub triapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of sr{∞,3}.
Drawn in chiral pairs, with edges missing between black triangles:
The dual tiling:
This hyperbolic tiling is topologically related as a part of sequence of uniform snub polyhedra with vertex configurations (3.3.3.3.n), and [n,3] Coxeter group symmetry.
n32 symmetry mutations of snub tilings: 3.3.3.3.n | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry n32 |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | |||||||||||
232 | 332 | 432 | 532 | 632 | 732 | 832 | ∞32 | ||||||||
Snub figures |
|||||||||||||||
Config. | 3.3.3.3.2 | 3.3.3.3.3 | 3.3.3.3.4 | 3.3.3.3.5 | 3.3.3.3.6 | 3.3.3.3.7 | 3.3.3.3.8 | 3.3.3.3.∞ Gyrofigures | |||||||
Config. | V3.3.3.3.2 | V3.3.3.3.3 | V3.3.3.3.4 | V3.3.3.3.5 | V3.3.3.3.6 | V3.3.3.3.7 | V3.3.3.3.8 | V3.3.3.3.∞ |
Paracompact uniform tilings in [∞,3] family | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [∞,3], (*∞32) | [∞,3]+ (∞32) |
[1+,∞,3] (*∞33) |
[∞,3+] (3*∞) | |||||||
= |
= |
= |
= or |
= or |
= | |||||
{∞,3} | t{∞,3} | r{∞,3} | t{3,∞} | {3,∞} | rr{∞,3} | tr{∞,3} | sr{∞,3} | h{∞,3} | h2{∞,3} | s{3,∞} |
Uniform duals | ||||||||||
V∞3 | V3.∞.∞ | V(3.∞)2 | V6.6.∞ | V3∞ | V4.3.4.∞ | V4.6.∞ | V3.3.3.3.∞ | V(3.∞)3 | V3.3.3.3.3.∞ |