Snub triapeirogonal tiling

Summary

Snub triapeirogonal tiling
Snub triapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.3.3.∞
Schläfli symbol sr{∞,3} or
Wythoff symbol | ∞ 3 2
Coxeter diagram CDel node h.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png or CDel node h.pngCDel split1-i3.pngCDel nodes hh.png
Symmetry group [∞,3]+, (∞32)
Dual Order-3-infinite floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub triapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of sr{∞,3}.

ImagesEdit

Drawn in chiral pairs, with edges missing between black triangles:

  

The dual tiling:

 

Related polyhedra and tilingEdit

This hyperbolic tiling is topologically related as a part of sequence of uniform snub polyhedra with vertex configurations (3.3.3.3.n), and [n,3] Coxeter group symmetry.

n32 symmetry mutations of snub tilings: 3.3.3.3.n
Symmetry
n32
Spherical Euclidean Compact hyperbolic Paracomp.
232 332 432 532 632 732 832 ∞32
Snub
figures
               
Config. 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.∞ Gyrofigures                
Config. V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7 V3.3.3.3.8 V3.3.3.3.∞
Paracompact uniform tilings in [∞,3] family
Symmetry: [∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)
                                                                 
     
=     
     
=     
     
=     
            =
     or     
      =
     or     
     
=     
                   
{∞,3} t{∞,3} r{∞,3} t{3,∞} {3,∞} rr{∞,3} tr{∞,3} sr{∞,3} h{∞,3} h2{∞,3} s{3,∞}
Uniform duals
                                                           
                 
V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞

See alsoEdit

ReferencesEdit

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External linksEdit