U is diagonalizable; that is, U is unitarily similar to a diagonal matrix, as a consequence of the spectral theorem. Thus, U has a decomposition of the form where V is unitary, and D is diagonal and unitary.
For any nonnegative integern, the set of all n × n unitary matrices with matrix multiplication forms a group, called the unitary groupU(n).
Every square matrix with unit Euclidean norm is the average of two unitary matrices.[1]
Equivalent conditions
edit
If U is a square, complex matrix, then the following conditions are equivalent:[2]
is unitary.
is unitary.
is invertible with .
The columns of form an orthonormal basis of with respect to the usual inner product. In other words, .
The rows of form an orthonormal basis of with respect to the usual inner product. In other words, .
is an isometry with respect to the usual norm. That is, for all , where .
is a normal matrix (equivalently, there is an orthonormal basis formed by eigenvectors of ) with eigenvalues lying on the unit circle.
Elementary constructions
edit
2 × 2 unitary matrix
edit
One general expression of a 2 × 2 unitary matrix is
which depends on 4 real parameters (the phase of a, the phase of b, the relative magnitude between a and b, and the angle φ). The form is configured so the determinant of such a matrix is
The sub-group of those elements with is called the special unitary group SU(2).
Among several alternative forms, the matrix U can be written in this form:
where and above, and the angles can take any values.
By introducing and has the following factorization:
This expression highlights the relation between 2 × 2 unitary matrices and 2 × 2orthogonal matrices of angle θ.
^Li, Chi-Kwong; Poon, Edward (2002). "Additive decomposition of real matrices". Linear and Multilinear Algebra. 50 (4): 321–326. doi:10.1080/03081080290025507. S2CID 120125694.
^Horn, Roger A.; Johnson, Charles R. (2013). Matrix Analysis. Cambridge University Press. doi:10.1017/CBO9781139020411. ISBN 9781139020411.
^Führ, Hartmut; Rzeszotnik, Ziemowit (2018). "A note on factoring unitary matrices". Linear Algebra and Its Applications. 547: 32–44. doi:10.1016/j.laa.2018.02.017. ISSN 0024-3795. S2CID 125455174.
^Williams, Colin P. (2011). "Quantum gates". In Williams, Colin P. (ed.). Explorations in Quantum Computing. Texts in Computer Science. London, UK: Springer. p. 82. doi:10.1007/978-1-84628-887-6_2. ISBN 978-1-84628-887-6.
^Barenco, Adriano; Bennett, Charles H.; Cleve, Richard; DiVincenzo, David P.; Margolus, Norman; Shor, Peter; et al. (1 November 1995). "Elementary gates for quantum computation". Physical Review A. 52 (5). American Physical Society (APS): 3457–3467, esp.p. 3465. arXiv:quant-ph/9503016. Bibcode:1995PhRvA..52.3457B. doi:10.1103/physreva.52.3457. ISSN 1050-2947. PMID 9912645. S2CID 8764584.
^Marvian, Iman (10 January 2022). "Restrictions on realizable unitary operations imposed by symmetry and locality". Nature Physics. 18 (3): 283–289. arXiv:2003.05524. Bibcode:2022NatPh..18..283M. doi:10.1038/s41567-021-01464-0. ISSN 1745-2481. S2CID 245840243.
^Jarlskog, Cecilia (2006). "Recursive parameterisation and invariant phases of unitary matrices". Journal of Mathematical Physics. 47 (1): 013507. arXiv:math-ph/0510034. Bibcode:2006JMP....47a3507J. doi:10.1063/1.2159069.
^Alhambra, Álvaro M. (10 January 2022). "Forbidden by symmetry". News & Views. Nature Physics. 18 (3): 235–236. Bibcode:2022NatPh..18..235A. doi:10.1038/s41567-021-01483-x. ISSN 1745-2481. S2CID 256745894. The physics of large systems is often understood as the outcome of the local operations among its components. Now, it is shown that this picture may be incomplete in quantum systems whose interactions are constrained by symmetries.