Cupola (geometry)


In geometry, a cupola is a solid formed by joining two polygons, one (the base) with twice as many edges as the other, by an alternating band of isosceles triangles and rectangles. If the triangles are equilateral and the rectangles are squares, while the base and its opposite face are regular polygons, the triangular, square, and pentagonal cupolae all count among the Johnson solids, and can be formed by taking sections of the cuboctahedron, rhombicuboctahedron, and rhombicosidodecahedron, respectively.

Set of cupolae
Pentagonal example
Facesn triangles,
n squares,
1 n-gon,
1 2n-gon
Schläfli symbol{n} || t{n}
Symmetry groupCnv, [1,n], (*nn), order 2n
Rotation groupCn, [1,n]+, (nn), order n
Dual polyhedron?
Propertiesconvex, prismatoid

A cupola can be seen as a prism where one of the polygons has been collapsed in half by merging alternate vertices.

A cupola can be given an extended Schläfli symbol {n} || t{n}, representing a regular polygon {n} joined by a parallel of its truncation, t{n} or {2n}.

Cupolae are a subclass of the prismatoids.

Its dual contains a shape that is sort of a weld between half of an n-sided trapezohedron and a 2n-sided pyramid.


Family of convex cupolae .mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}v
  • t
  • e
  • n 2 3 4 5 6 7 8
    Schläfli symbol {2} || t{2} {3} || t{3} {4} || t{4} {5} || t{5} {6} || t{6} {7} || t{7} {8} || t{8}
    Digonal cupola
    Triangular cupola
    Square cupola
    Pentagonal cupola
    Hexagonal cupola
    Heptagonal cupola
    (Non-regular face)
    Octagonal cupola
    (Non-regular face)
    Rhombitrihexagonal tiling
    Rhombitriheptagonal tiling
    Rhombitrioctagonal tiling
    Plane "hexagonal cupolae" in the rhombitrihexagonal tiling

    The above-mentioned three polyhedra are the only non-trivial convex cupolae with regular faces: The "hexagonal cupola" is a plane figure, and the triangular prism might be considered a "cupola" of degree 2 (the cupola of a line segment and a square). However, cupolae of higher-degree polygons may be constructed with irregular triangular and rectangular faces.

    Coordinates of the vertices

    A tetracontagonal cupola has:
      40 rectangles;
      A top regular tetracontagon;
    and a bottom regular octacontagon (hidden).

    The definition of the cupola does not require the base (or the side opposite the base, which can be called the top) to be a regular polygon, but it is convenient to consider the case where the cupola has its maximal symmetry, Cnv. In that case, the top is a regular n-gon, while the base is either a regular 2n-gon or a 2n-gon which has two different side lengths alternating and the same angles as a regular 2n-gon. It is convenient to fix the coordinate system so that the base lies in the xy-plane, with the top in a plane parallel to the xy-plane. The z-axis is the n-fold axis, and the mirror planes pass through the z-axis and bisect the sides of the base. They also either bisect the sides or the angles of the top polygon, or both. (If n is even, half of the mirror planes bisect the sides of the top polygon and half bisect the angles, while if n is odd, each mirror plane bisects one side and one angle of the top polygon.) The vertices of the base can be designated   through   while the vertices of the top polygon can be designated   through   With these conventions, the coordinates of the vertices can be written as:


    for j = 1, 2, ..., n.

    Since the polygons   etc. are rectangles, this puts a constraint on the values of   The distance   is equal to


    while the distance   is equal to


    These are to be equal, and if this common edge is denoted by s,


    These values are to be inserted into the expressions for the coordinates of the vertices given earlier.


    4 5 7 8 nd
    Crossed square cupola
    (upside down)
    Crossed pentagrammic cupola
    (upside down)
    Heptagrammic cupola
    Octagrammic cupola
    Crossed heptagrammic cupola
    (upside down)
    Crossed octagrammic cupola
    3 5 7 nd
    Crossed triangular cuploid
    (upside down)
    Pentagrammic cuploid
    Heptagrammic cuploid
    Crossed pentagonal cuploid
    (upside down)
    Crossed heptagrammic cuploid

    Star cupolae exist for any top base {n/d} where 6/5 < n/d < 6 and d is odd. At these limits, the cupolae collapse into plane figures. Beyond these limits, the triangles and squares can no longer span the distance between the two base polygons (it can still be made with non-equilateral isosceles triangles and non-square rectangles). If d is even, the bottom base {2n/d} becomes degenerate; then we can form a cupoloid or semicupola by withdrawing this degenerate face and letting the triangles and squares connect to each other here (through single edges) rather than to the late bottom base (through its double edges). In particular, the tetrahemihexahedron may be seen as a {3/2}-cupoloid.

    The cupolae are all orientable, while the cupoloids are all non-orientable. For a cupoloid, if n/d > 2, then the triangles and squares do not cover the entire (single) base, and a small membrane is placed in this base {n/d}-gon that simply covers empty space. Hence the {5/2}- and {7/2}-cupoloids pictured above have membranes (not filled in), while the {5/4}- and {7/4}-cupoloids pictured above do not.

    The height h of an {n/d}-cupola or cupoloid is given by the formula:

    In particular, h = 0 at the limits n/d = 6 and n/d = 6/5, and h is maximized at n/d = 2 (in the digonal cupola: the triangular prism, where the triangles are upright).[1][2]

    In the images above, the star cupolae have been given a consistent colour scheme to aid identifying their faces: the base {n/d}-gon is red, the base {2n/d}-gon is yellow, the squares are blue, and the triangles are green. The cupoloids have the base {n/d}-gon red, the squares yellow, and the triangles blue, as the base {2n/d}-gon has been withdrawn.



    The hypercupolae or polyhedral cupolae are a family of convex nonuniform polychora (here four-dimensional figures), analogous to the cupolas. Each one's bases are a Platonic solid and its expansion.[3]

    Name Tetrahedral cupola Cubic cupola Octahedral cupola Dodecahedral cupola Hexagonal tiling cupola
    Schläfli symbol {3,3} || rr{3,3} {4,3} || rr{4,3} {3,4} || rr{3,4} {5,3} || rr{5,3} {6,3} || rr{6,3}
    K4.23 K4.71 K4.107 K4.152
    Cap cells               
    Vertices 16 32 30 80
    Edges 42 84 84 210
    Faces 42 24 triangles
    18 squares
    80 32 triangles
    48 squares
    82 40 triangles
    42 squares
    194 80 triangles
    90 squares
    24 pentagons
    Cells 16 1 tetrahedron
    4 triangular prisms
    6 triangular prisms
    4 triangular pyramids
    1 cuboctahedron
    28  1 cube
     6 square prisms
    12 triangular prisms
     8 triangular pyramids
     1 rhombicuboctahedron
    28  1 octahedron
     8 triangular prisms
    12 triangular prisms
     6 square pyramids
     1 rhombicuboctahedron
    64  1 dodecahedron
    12 pentagonal prisms
    30 triangular prisms
    20 triangular pyramids
     1 rhombicosidodecahedron
    1 hexagonal tiling
    ∞ hexagonal prisms
    ∞ triangular prisms
    ∞ triangular pyramids
    1 rhombitrihexagonal tiling
    runcinated 5-cell
    runcinated tesseract
    runcinated 24-cell
    runcinated 120-cell
    runcinated hexagonal tiling honeycomb

    See also



    1. ^ "cupolas". Retrieved 21 April 2018.
    2. ^ "semicupolas". Retrieved 21 April 2018.
    3. ^ a b Convex Segmentochora Dr. Richard Klitzing, Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000
    • Johnson, N.W. Convex Polyhedra with Regular Faces. Can. J. Math. 18, 169–200, 1966.