In mathematics, the dot product or scalar product[note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product (or rarely projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see Inner product space for more).
Algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences of numbers. Geometrically, it is the product of the Euclidean magnitudes of the two vectors and the cosine of the angle between them. These definitions are equivalent when using Cartesian coordinates. In modern geometry, Euclidean spaces are often defined by using vector spaces. In this case, the dot product is used for defining lengths (the length of a vector is the square root of the dot product of the vector by itself) and angles (the cosine of the angle between two vectors is the quotient of their dot product by the product of their lengths).
The name "dot product" is derived from the dot operator " · " that is often used to designate this operation;[1] the alternative name "scalar product" emphasizes that the result is a scalar, rather than a vector (as with the vector product in three-dimensional space).
Definitionedit
The dot product may be defined algebraically or geometrically. The geometric definition is based on the notions of angle and distance (magnitude) of vectors. The equivalence of these two definitions relies on having a Cartesian coordinate system for Euclidean space.
In modern presentations of Euclidean geometry, the points of space are defined in terms of their Cartesian coordinates, and Euclidean space itself is commonly identified with the real coordinate space. In such a presentation, the notions of length and angle are defined by means of the dot product. The length of a vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non oriented) angle between two vectors of length one is defined as their dot product. So the equivalence of the two definitions of the dot product is a part of the equivalence of the classical and the modern formulations of Euclidean geometry.
Coordinate definitionedit
The dot product of two vectors and , specified with respect to an orthonormal basis, is defined as:[2]
Expressing the above example in this way, a 1 × 3 matrix (row vector) is multiplied by a 3 × 1 matrix (column vector) to get a 1 × 1 matrix that is identified with its unique entry:
Geometric definitionedit
Illustration showing how to find the angle between vectors using the dot productCalculating bond angles of a symmetrical tetrahedral molecular geometry using a dot product
In Euclidean space, a Euclidean vector is a geometric object that possesses both a magnitude and a direction. A vector can be pictured as an arrow. Its magnitude is its length, and its direction is the direction to which the arrow points. The magnitude of a vector is denoted by . The dot product of two Euclidean vectors and is defined by[3][4][1]
These properties may be summarized by saying that the dot product is a bilinear form. Moreover, this bilinear form is positive definite, which means that is never negative, and is zero if and only if , the zero vector.
The vectors are an orthonormal basis, which means that they have unit length and are at right angles to each other. Since these vectors have unit length,
and since they form right angles with each other, if ,
Thus in general, we can say that:
where is the Kronecker delta.
Vector components in an orthonormal basis
Also, by the geometric definition, for any vector and a vector , we note that
where is the component of vector in the direction of . The last step in the equality can be seen from the figure.
Now applying the distributivity of the geometric version of the dot product gives
which is precisely the algebraic definition of the dot product. So the geometric dot product equals the algebraic dot product.
Propertiesedit
The dot product fulfills the following properties if , , and are real vectors and , and are scalars.[2][3]
because the dot product between a scalar and a vector is not defined, which means that the expressions involved in the associative property, or are both ill-defined.[7] Note however that the previously mentioned scalar multiplication property is sometimes called the "associative law for scalar and dot product"[8] or one can say that "the dot product is associative with respect to scalar multiplication" because .[9]
Unlike multiplication of ordinary numbers, where if , then always equals unless is zero, the dot product does not obey the cancellation law: If and , then we can write: by the distributive law; the result above says this just means that is perpendicular to , which still allows , and therefore allows .
Triangle with vector edges a and b, separated by angle θ.
Given two vectors and separated by angle (see image right), they form a triangle with a third side . Let , and denote the lengths of , , and , respectively. The dot product of this with itself is:
The scalar triple product of three vectors is defined as
Its value is the determinant of the matrix whose columns are the Cartesian coordinates of the three vectors. It is the signed volume of the parallelepiped defined by the three vectors, and is isomorphic to the three-dimensional special case of the exterior product of three vectors.
This identity, also known as Lagrange's formula, may be remembered as "ACB minus ABC", keeping in mind which vectors are dotted together. This formula has applications in simplifying vector calculations in physics.
Physicsedit
In physics, vector magnitude is a scalar in the physical sense (i.e., a physical quantity independent of the coordinate system), expressed as the product of a numerical value and a physical unit, not just a number. The dot product is also a scalar in this sense, given by the formula, independent of the coordinate system. For example:[10][11]
For vectors with complex entries, using the given definition of the dot product would lead to quite different properties. For instance, the dot product of a vector with itself could be zero without the vector being the zero vector (e.g. this would happen with the vector ). This in turn would have consequences for notions like length and angle. Properties such as the positive-definite norm can be salvaged at the cost of giving up the symmetric and bilinear properties of the dot product, through the alternative definition[12][2]
In the case of vectors with real components, this definition is the same as in the real case. The dot product of any vector with itself is a non-negative real number, and it is nonzero except for the zero vector. However, the complex dot product is sesquilinear rather than bilinear, as it is conjugate linear and not linear in . The dot product is not symmetric, since
The angle between two complex vectors is then given by
The self dot product of a complex vector , involving the conjugate transpose of a row vector, is also known as the norm squared, , after the Euclidean norm; it is a vector generalization of the absolute square of a complex scalar (see also: squared Euclidean distance).
The inner product of two vectors over the field of complex numbers is, in general, a complex number, and is sesquilinear instead of bilinear. An inner product space is a normed vector space, and the inner product of a vector with itself is real and positive-definite.
Functionsedit
The dot product is defined for vectors that have a finite number of entries. Thus these vectors can be regarded as discrete functions: a length- vector is, then, a function with domain, and is a notation for the image of by the function/vector .
This notion can be generalized to continuous functions: just as the inner product on vectors uses a sum over corresponding components, the inner product on functions is defined as an integral over some interval[a, b]:[2]
Generalized further to complex functions and , by analogy with the complex inner product above, gives[2]
Weight functionedit
Inner products can have a weight function (i.e., a function which weights each term of the inner product with a value). Explicitly, the inner product of functions and with respect to the weight function is
Dyadics and matricesedit
A double-dot product for matrices is the Frobenius inner product, which is analogous to the dot product on vectors. It is defined as the sum of the products of the corresponding components of two matrices and of the same size:
The inner product between a tensor of order and a tensor of order is a tensor of order , see Tensor contraction for details.
Computationedit
Algorithmsedit
The straightforward algorithm for calculating a floating-point dot product of vectors can suffer from catastrophic cancellation. To avoid this, approaches such as the Kahan summation algorithm are used.
Librariesedit
A dot product function is included in:
BLAS level 1 real SDOT, DDOT; complex CDOTU, ZDOTU = X^T * Y, CDOTC, ZDOTC = X^H * Y
^ abcdefS. Lipschutz; M. Lipson (2009). Linear Algebra (Schaum's Outlines) (4th ed.). McGraw Hill. ISBN 978-0-07-154352-1.
^ abcM.R. Spiegel; S. Lipschutz; D. Spellman (2009). Vector Analysis (Schaum's Outlines) (2nd ed.). McGraw Hill. ISBN 978-0-07-161545-7.
^A I Borisenko; I E Taparov (1968). Vector and tensor analysis with applications. Translated by Richard Silverman. Dover. p. 14.
^Arfken, G. B.; Weber, H. J. (2000). Mathematical Methods for Physicists (5th ed.). Boston, MA: Academic Press. pp. 14–15. ISBN 978-0-12-059825-0.
^Nykamp, Duane. "The dot product". Math Insight. Retrieved September 6, 2020.
^Weisstein, Eric W. "Dot Product." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DotProduct.html
^T. Banchoff; J. Wermer (1983). Linear Algebra Through Geometry. Springer Science & Business Media. p. 12. ISBN 978-1-4684-0161-5.
^A. Bedford; Wallace L. Fowler (2008). Engineering Mechanics: Statics (5th ed.). Prentice Hall. p. 60. ISBN 978-0-13-612915-8.
^K.F. Riley; M.P. Hobson; S.J. Bence (2010). Mathematical methods for physics and engineering (3rd ed.). Cambridge University Press. ISBN 978-0-521-86153-3.
^M. Mansfield; C. O'Sullivan (2011). Understanding Physics (4th ed.). John Wiley & Sons. ISBN 978-0-47-0746370.
^Berberian, Sterling K. (2014) [1992]. Linear Algebra. Dover. p. 287. ISBN 978-0-486-78055-9.
External linksedit
Wikimedia Commons has media related to Scalar product.